속도변동에 의한 충류확산화염의 응답

신 현 통(한국과학기술원)

속도변등에 의한 충류확산화염의 용답

한국과학기술원 기계공학과

신 현 동

Motivation

Combustion phenomena and modeling being treated with counter type combustor

- Interaction between combustion reaction and eddy motion of reactive flow
- Scalar field information with reactive turbulent flow
- The response of flame for the velocity variation

Impulsive Variation of Stain Rate

By Mauss

 $\ensuremath{\mathsf{METHOD}}$: Increasing and decreasing of strain rate

RESULT: Flamelet extinction and re-ignition by the time of excessive strain rate

Step and Constant Variation

By Darabiha

METHOD:

Step variation of linear increasing strain rate

RESULT:

The time delay between extinction limit & maximum flame temperature exists

Monotonic Decreasing Variation

By Park & Shin

METHOD:

Simulation of starting fuel jet ignited by residual flame with counter flow diffusion flame

RESULT:

Flame response of unsteady strain rate shows the behavior of middle branch at the S-curve

Oscillatory Variation

By Saitoh & Otsuka

METHOD: Flow oscillation in counterflow geometry

RESULT: The amplitude of temperature or concentration fluctuation decrease with the increasing of the frequency of velocity

Linear Variation

Analysis Methods

- Experiment
 - Experiments are set with evolving jet diffusion flames.
 - In the moving coordinate of fuel vortex, air stream velocity is changed with time
 - Similarity with counterflow

cf.
$$a_s = \frac{3V(t)}{2R(t)}$$

- Asymptotic Method
 - Based on LAE asymptotic, unsteady responses have been studied.
- Modeling
 - Response of Linearly varying strain rate is parameterized with the similarity variable of Stoke's first problem.

Results of Extinction Limit by Various Methods

a₀: initial strain rate

a_{E,0}: steady extinction strain rate

a_{ext}: unsteady extinction strain rate

β (=da/dt) : slope of strain rate

 η_{ext} =4 for this model

Conclusion

1. Unsteadiness of Diffusion Flames

- Cases of quenching flames
 - a_{ext} is extended with increasing the da/dt
- Strongly influenced by da/dt near the extinction point
- Cases of non-quenched flames
 - Two distinct T_{max} exist at the same strain rate
 - T_{max} of the flame undergoing a high strain rate is always lower

2. Analysis of the Results

- Asymptotic Method
 - a_{ext} exceeds the steady one and is extended by the flow unsteadiness
 - The tendency of the extension is different from experimental result
- Analogy to Stoke's 1st Problem
 - The extension of extinction has good agreement to experimental result
 - More verification for modeling should be conducted by numerical simulation