Neural-based Approach to Time Series Prediction with Discriminant Learning

차별학습에 의한 시계열 예측에 대한 신경망접근

  • Jo, Tae-Ho Charles (KORDIC (Korea Research & Development Information Center) GIIS (Group of Intelligent Information System)) ;
  • Seo, Jerry (KORDIC (Korea Research & Development Information Center) GIIS (Group of Intelligent Information System))
  • 조태호 (연구개발정보센터 정보시스템 개발실) ;
  • 서정현 (연구개발정보센터 정보시스템 개발실)
  • Published : 2000.10.13

Abstract

시계열 예측에 있어서 과거의 측정치 보다 최근의 측정치가 미래의 측정치 예측에 중요한 영향을 미친다. 시계열 예측에 있어서 최근의 측정치와 과거의 측정치가 미래의 값을 예측하는 인자로서 차별화 되어 학습해야 할 것이다. 기존의 시계열에 대한 신경망 접근에서는 최근의 측정치에 대한 학습 패턴과 과거의 측정치에 대한 학습 패턴을 동일하게 학습하였다. 이 논문에서는 과거의 학습패턴과 최근의 학습 패턴을 학습 횟수 면에서 차별화 하였다. 이러한 학습을 이 논문에서는 차별학습이라 한다. 차별학습에서는 주어진 학습 패턴을 시간 순으로 나열하고 일정 개수로 분할한다. 시간의 역순에 의해 등차 또는 등비의 형태로 학습 횟수를 설정한다. 각 학습 패턴의 분말집단을 시간의 역순으로 일정 횟수를 감소시켜 학습 횟수를 설정하는 등차차별학습과 일정 비율로 감소시켜 학습횟수를 설정하는 등비차별학습을 소개한다. 기존의 신경망 접근 방법과 이 논문에서 제안한 신경망 접근방법을 비교하기 위해 Mackay-Galss 공식에 의해 인공적으로 생성된 시계열 데이터를 예로 사용하였다.

Keywords