Temperature Dependence of Optical Energy Gaps of $CdGaInS_4:Er^{3+}$ Single Crystals for Optoelectronic device

광전 소자용 $CdGaInS_4:Er^{3+}$ 단결정의 광학적 에너지 갭의 온도의존성

  • Published : 2000.07.07

Abstract

$CdGaInS_4$ and $CdGaInS_4:Er^{3+}$ single crystals crystallized in the rhombohedral(hexagonal) structure. with lattice constants $a=3.913{\AA},\;c=37.245{\AA}$ for $CdGaInS_4$, and $a=3.899{\AA}$ and $c=36.970{\AA}$ for $CdGaInS_4:Er^{3+}$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of these compounds had a direct and indirect band gap. the direct and indirect energy gaps are found to be 2.771 and 2.503 eV for $CdGaInS_4$, and 2.665 and 2.479 eV for $CdGaInS_4:Er^{3+}$ at 10 K. The temperature dependence of the optical energy gap was well represented by the Varshni equation. In $CdGaInS_4$, the values of ${\alpha},\;{\beta}$ of the direct and the indirect energy gap were found to be $7.57{\times}10^{-4}eV/K$. $6.53{\times}10^{-4}eV/K$ and 240K. 197K. and the values of ${\alpha}$ and ${\beta}$ of the direct and the indirect energy gap in the $CdGaInS_4:Er^{3+}$ were given by $8.28{\times}10^{-4}eV/K,\;2.08{\times}10^{-4}eV/K$ and 425 K, 283 K, respectively.

Keywords