FUNGAL EXTRACELLULAR POLYSACCHARIDES INVOLVED IN RECYCLING OF METABOLITES AND OSMOTOLERANCE OF PENICILLIUM FELLUTANUM : APPLICATION OF $^{13}$ C-NMR SPECTROSCOPY FOR THE STUDY ON FUNGAL PHYSIOLOGY AND METABOLISM

  • Park, Yong-Il (Environmental Bioresources Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Gander, John.-E. (Department of Microbiology and Cell Science, University of Florida)
  • Published : 2000.04.01

Abstract

Penicillium fellutanum produces a phosphorylated, choline-containing extracellular peptido-polysaccharide, peptidophosphogalactomannan (pPxGM) (8). The $\^$13/C-methyl labeled pPxGM ([methyl-$\^$13/C]pPxGM) was prepared from the cultures supplemented with L-[methyl-$\^$13/C]methionine or [2-$\^$13/C]glycine and was used as a probe to monitor the fate of phosphocholine in this polymer. Addition of purified [methyl-$\^$l3/C]pPxGM to growing cultures in low phosphate medium resulted in the disappearance of [methyl-$\^$13/C]phosphocholine and -N,N'-dimethyl-phosphoethanolamine from the added [methyl-$\^$13/C]pPxGM. Two $\^$l3/C-methyl-enriched cytoplasmic solutes, choline-O-sulfate and glycine betaine, were found in mycelial extracts, suggesting that phosphocholine-containing extracellular pPxGM of P.fellutanum is a precursor of intracellular choline-O-sulfate and glycine betaine and thus of phosphatydilcholine (l0). $\^$13/C-Methyl-labeled cells grown in 3 M NaCl-containing medium showed 2.6- and 22-fold more accumulation of $\^$13/C-methyl labeled choline-O-sulfate and glycine betaine, respectively, originated from the extracellular [$\^$13/C-methyl]pPxGM than those grown without added NaCl. The results suggest that, in addition to glycerol and erythritol, glycine betaine and choline-O-sulfate and thus choline are also osmoprotectants and hence that pPxGM is involved in osmotolerance of this fungus (11). Taken collectively, the $\^$l3/C- and $\^$31/P-NMR analyses of cytosolic solute pools and structural modulation of extracellular pPxGM corresponding to environmental stimuli in P. fellutanum, provided evidence that pPxGM is involved in cellular choline metabolism, osmotolerance, and recycling of metabolites.

Keywords