Coproducts of Ringed Spaces
Yungduk Cho

Abstract @ In this paper, we show that arbitrary family of ringed spaces has the

coproduct and every finite coproduct of compact ringed spaces is compact.

1. Introduction

A ringed space is a topological space together with a sheaf of rings and a morphism of
ringed spaces is defined by a pair of continuous map and a morphism of sheaves. It is
well known that the category of rings has arbitrary products and coproducts, as the
category of topological spaces has. The products in both categories are defined by the
Cartesian products and. canonical projections. The coproducts in the category of
topological spaces are the topological sums whose underlying sets are the disjoint unions
[31.

In this paper, we construct coproducts in the category of ringed spaces. We know

that given a family of sheaves {F,|7/€I} on a topological space X the direct product

sheaf on X can be constructed in a natural way [16). We construct, for a family of
topological spaces {X,ieIl} and a family of sheaves {F;|i€I} where each F; is a

sheaf of rings on X, , the product sheaf of rings HIF ; on the product space

e

LIIX ; . This idea is helpful to our work to construct the coproduct of ringed spaces.
H N

Given a family of ringed spaces, the coproduct consists of a coproduct topological space
and a sheaf whose components are products of rings. Each coproduct injection consists
of a coproduct injection of topological spaces and a sheaf morphism whose components
are projections of rings.

Many authors have been concerned with sectional representations of rings. For
example, the ring of global sections of a compact local ringed space is a Gelfand ring
[3]; the ring of global sections of a compact simple ringed space is a biregular ring [2];
the ring of global sections of a compact prime ringed space is a weakly Baer ring [15].
A common feature of the ringed spaces in above examples is the compactness. Our
interest is the properties of the category of compact ringed spaces. The compactness of
a topological space X may be described in terms of the ring R(X) of continuous real
valued functions on X. A ringed space (X, F)is compact when the topological space
X is compact and the sheaf F has some properties similar to those of R(X). We
state and prove the analogue of the property that topological products of compact spaces

are compact.
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2. Preliminaries

A presheaf F of sets on a topological space X is a functor (X)? — Set where
2(X) is the partially odered set of open sets in X. For each pair of open sets UDV

of X, the morphism F(U) — F(V) is denoted by 0% . A morphism of presheaves

F(U) — F(V) is defined by a natural transformation.
For a presheaf F on X and x€X, the stalk F, of F at x is defined by the direct

limit limF(U), where U runs through all open neighborhoods of x in X For each
s€e F(U) with U an open neighborhood of x, the image of s under the coproduct
injection is denoted by s,

A presheaf F of sets on X is called a sheaf if it satisfies the following condition:

For any open covering U = AUA U,with open sets U, U, in X, the sequence of
=

maps

O — };IAF( Up = F(UNU,

is an equalizer diagram.

“, v, EAxA

A sheaf space over X is a pair (E, p) of a topological space E and a surjective
local homeomorphism p: E — X
let LF = xIéIxF v the disjoint union of stalks, together with the topology generated

by the sets s(U) = {s, ] s€U)} for all open sets U in X and se€F(U), where 5 is
the map U — LF, x s, Then each s is continuous and the natural projection
p: LF — X, s, xis a surjective local homeomorphism. Hence (LF, p)is a
sheaf space over X.

Conversely, for each sheaf space (E, p), a sheaf (of sets) I'E can be constructed
as follows;

For each open set U in X,

TE() = {6: U— | ¢ is continuous and po = idy)
and for each pair of open sets UDVin X,
pY: TE(U) — TE(V), o+~ dy
Each o=TE(U) is called a section (of p) and p% is called a restriction map.
For a presheaf F, the sheaf I'LF is called the shedfification of F.

Lemma 2.1 Let (E, p) be a sheaf space over X Then, for each x€X,
p7Nx) = (IE),
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Proposition 2.2 If E is a sheaf space over X, then LI'E = E
Lemma 23 If F is a sheaf on X, then F = ILE

Now if F is a sheaf then we can identify F with the sheafification I'LE F(IU) is

called the set of sections. In particular, sections in F(X) are called global sections. For

each section ¢=F(U) and open subsets VCU, the map pg is called the restriction
and we write dy instead of p¥(0).

A sheaf of rings on a topological space X is a sheaf space (E, p) over X
satisfying the following conditions:

(1) for each xeX, p “Nx)is a ring;
(2) the ring operations
Ex,E= {(a, 0| pla) = p(B)} > E, (a, b)— a—b
and
EX,E—E, (a, b)— ab
are continuous;

(3) the assignment of identity X — E, x> 1, » ~Y(x)is continuous.

Remark By Proposition 2.2 and Lemma 2.3, we may redefine a sheaf of rings on X by
a sheaf F of sets on X such that, for each open set U in X, F(U) is a ring and

the restriction maps pg are ring homomorphisms.

if f: X— Yis a continuous map and F is a sheaf on X then the direct image
sheaf of f denoted by f.F, is a sheaf on Y defined by

£F(V) = FGH{(Vind o} = o4}
for each pair of open sets VCVin Y.

3. Ringed spaces

Definition 3.1 A ringed space is a pair (X, F)of topological space X and a sheaf F
of rings on X Given ringed spaces (X, F) and (Y, G) a morphism
(X, F) > (Y, G)is a pair (f, f")of a continuous map f: X — Yand a sheaf
morphism f* : G — AF.

Given morphisms (f, /') : (X, F) - (Y, Gand (g, g") : (Y, G — (Z, H)of

ringed spaces, the composition is defined by the pair (g -7, (g° A ")of the composition
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of maps g° f and the sheaf morphism (g-° A" : H— (g° p).F which assigns, to each
open set W in Z, the ring homomorphism
(g-D"W : HW — (g NF(W = AF(g” (W) = F(f -7 (W)
such that
Flg Tt m) - 2" (W = (g-H"(W

Theorem 3.2 The category of ringed spaces has arbitrary coproducts.

Definition 3.3 A ringed space (X, F)is said to be Hausdorff if and only if, for any
distinct elements x; x, of X, there is a global section o€ F(X) such that o(x;) = 1

Definition 3.4 A ringed space (X, F)is said to be Completely regular if and only if,
for any x=X and closed subset B of X not containing x, there is a global section
o= F(X) such that o(x;) = land dg= 0

Definition 35 A ringed space (X, F)is said to be Compact if and only if it is

completely regular and X is a compact topological space.

Clearly, every completely regular ringed space is Hausdorff. The converse is proved in
[14]. Thus, we have :

Proposition 3.6 A ringed space (X, F)is Compact if and only if it is Hausdorff and

X is compact.

Theorem 3.7 Finite coproducts of compact ringed spaces are compact.
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