SOIL TEMPERATURE PREDICTION OF THE REGION OF THE SOUTHERN PART OF THE KOREA

  • Kim, Y. B. (Division of agricultural engineering, College of Agriculture, Gyeongsang national university) ;
  • H. S. Ha (Division of Applied Chemistry & Food Technology Gyeongsang national university)
  • Published : 2000.11.01

Abstract

The optimal equations to predict the soil tempratures of twelve cities in the region of the southern part of the Korea such as Changhung, Cheju, Chinju, Kwangju, Masan, Miryang, Mokpo, Muan, Pusan, Sogwipo, Ulsan, Yoosu, were suggested as function of time and soil depth and the time dependent variation and soil depth dependent distribution of temperature were analyzed for the back data of the geothermal energy utilization system design and agricultural usages. The equation form is $T(x,\;t)\;=\;T_{m}\;-\;T_{so}{\cdot}Exp(-\xi){\cdot}cos{\omega}(t\;-\;t_{o}\;-\;x\;/\sqrt{2{\alpha}{\omega}}$) and it can predict the soil temperatures well with the correlation factor of 0.98 or upwards for most data. The range of mean soil temperature was $14.99~18.53^{\circ}C$ and soil surface temperature swing, 11.65~14.54 days, soil thermal diffusivity, $0.025~0.069\;m^2/day$ except Mokpo of $0.100\;m^2/day$, and phase shift, 19.66~27.81 days. During about thirty years from 1960s to 1990s, the mean soil temperature was increased by $0.04~1.25^{\circ}C$. The temperature difference depending on soil depth was not significant.

Keywords