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1. Introduction

D

The early investigators into the in-plane vibration of rings were Hoppe and

2)

Love 2. Love ? improved on Hoppe's theory by allowing for stretching of the

ring. Lamb 3 investigated the statics of incomplete ring with various boundary

conditions and the dynamics of an incomplete free-free ring of small curvature. Den

4)

Hartog used the Rayleigh-Ritz method for finding the lowest natural frequency

of circular arcs with simply supported or clamped ends and his work was extended

by Volterra and Morell 5 for the vibrations of arches having center lines in the

)

form of cycloids, catenaries or parabolas. Archer ® carried out for a mathematical

study of the in-plane inextensional vibrations of an incomplete circular ring of

2)

small cross section with the basic equations of motion as given in Love and

gave a prescribed time - dependent displacement at the other end for the case of

7

clamped ends. Nelson applied the Rayleigh-Ritz method in conjunction with

Lagrangian multipliers to the case of a circular ring segment having simply
supported ends. Auciello and De Rosa 8 reviewed the free vibrations of circular
arches and briefly illustrated a number of other approaches. Ojalvo 9 obtained the

equations governing three-dimensional linear motions of elastic rings and results for
generalized loadings and viscous damping making use of wusual classical

beam-theory assumptions for the clamped ends. Rodgers and Warner O calculated
the frequencies of curved elastic rods with simply supported ends.

A rather efficient alternate procedure for the solution of partial differential
equations is the method of differential quadrature which was introduced by Bellman
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D This simple direct technique can be applied to a large number of

and Casti
cases to circumvent the difficulties of programming complex algorithms for the
computer, as well as excessive use of storage. This method is used in the present
work to analyze the free in-plane extensional vibrations of curved beams with
various boundary conditions and opening angles. The lowest frequencies are
calculated for the member. The curved beams considered are of uniform cross
section and mass per unit of length and are either clamped or simply supported at
both ends. Numerical results are compared with other numerical solutions by a
combination of a Holzer-type iterative procedure and an initial value integration

procedure.
2. System and Governing Equations

The uniform curved beam considered is shown in Fig, 1. A point on the
centroidal axis is defined by the angle 6, measured from the left support. The

tangential and radial displacements of the arch axis are v and w, respectively. a is
the radius of the centroidal axis.

2 ysed a theory which accurately considers the extensibility of

Veletsos et al.
the arch axis and the curved beam effect but neglects the effects of rotatory inertia
and shearing deformation, they considered simply supported and clamped ends. The
differential equations for free vibration of the system which consider the

extensibility of the arch axis but neglect the effects of rotatory inertia and shearing

deformation, obtained by specializing Flugge's equations for cylindrical shells 13
and incorporating the radial and tangential inertia effects, are

w” "+ 20%w" +[ 0%+ 9%(%)2— A Jw+ 90(—*3—)"};’ =0 (D

0"+ ﬂ(—§—)%+ 6w’ =0 (2)
where S=a#  is the length of the arch axis, r is the radius of gyration of the

cross section, and A is a dimensionless parameter, related to the circular frequency

of vibration of the system, @, by
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Here, wm is the mass per unit length, &, is the opening angle, E is the

w:

(3)

s [

Young's modulus of elasticity for the material, and [ is the area moment of inertia
of the cross section.

Austin and Veletsos ¥

studied the free vibrational characteristics of circular
arches vibrating in their own planes and presented a simple approximate procedure
for estimating the natural frequencies of the systems based on a theory which
includes the effects of rotatory inerita.

The differential equations including the effects of rotatory inertia but neglecting

shearing deformation, obtained from Federhofer's system 15 are

w” " +[26%+ Az(—g)z]w” +[ 64, 920({1)2— AJw+

[(5)2= 2456w =0 @

v +[22 ()4 0% A5 ot 0[1— AH(5) Tw =0 (5)

The boundary conditions for simply supported and clamped ends are, respectively,
v=w=w" =0 (6)

v=w=w" =0 (7

Uniform, Circular Arch

Simply supported
or clamped

Fig. 1 Arch Considered
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3. Differential Quadrature Method

The Differential Quadrature Method was introduced by Bellman and Casti D,

By formulating the quadrature rule for a derivative as an analogous extension of
quadrature for integrals in their introductory paper, they proposed the differential
quadrature method as a new technique for the numerical solution of initial value

problems of ordinary and partial differential equations. It was applied for the first

1 The versatility

time to static analysis of structural components by Jang et al.
of the DQM to engineering analysis in general and to structural analysis in

particular is becoming increasingly evident by the related publications of recent

17

years. Han and Kang applied the method to the buckling analysis of circular

curved beams. From a mathematical point of view, the application of the differential
quadrature method to a partial differential equation can be expressed as follows:

L{ﬂx)}, = ﬁ\W"f f(x,) for Z', ]'=1,2,...,N (8)

where L denotes a differential operator, x; are the discrete points considered in

the domain, Ax;) are the function values at these points, W, are the weighting

coefficients attached to these function values, and N denotes the number of
discrete points in the domain. This equation, thus, can be expressed as the
derivatives of a function at a discrete point in terms of the function values at all
discrete points in the variable domain.

The general form of the function Ax) is taken as

flo=x*' for k=12,3,....N ©)

If the differential operator L represents an #» th derivative, then

3 Wit = b= k=2t for i k= L2 N (0
2
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This expression represents N sets of N linear algebraic equations,

unique solution for the weighting coefficients, W, since the coefficient matrix is a

Vandermonde matrix which always has an inverse, as described by Hamming 18

4. Application

Applying the differential quadrature method to equations (1) and (2), gives

ﬁlDij w,-+ 2620 ]ﬁlBij M),'f‘[ 040+ 920(—5)2_ ﬂz]wi-i-
= =
e&—f)ﬂﬁim v = 0 (11)

lﬁ‘Bij vj+ A 2(_§)201_+ 6 0 ﬁlAij w; = 0 (12)
= =

Similarly, applying the differential quadrature method to equations (4) and (5) gives

ﬁlp,, wit[ 26%+ 1°(-5)"] ﬁlB,, wi+[ 6%+ 920<~§)2— A%lw,+
S\e_ 20 .72 -

(5= a5 B A, v = 0

gB,, o[ 25 8% A% (%) Tt

90[1_’ /120(_5')4] ﬁlAl‘j w; = 0 (13)

The boundary conditions for simply supported ends, given by equations (6), can
be expressed in differential quadrature form as follows:

UI:'O at X =0
vy = 0 at X =1
w, =0 at X =10

21
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ngZj w; = 0 at X =0+9$¢

gB(}V—l)j w; = 0 at X=1-95

wN—O at X =1

Similarly, the boundary conditions for clamped ends, given by equations (7), can be
expressed in differential quadrature form as follows:

vy =0 at X =190
oy = 0 at X =1
w1=0 at X =0

21142,‘ w; = 0 at X =0+$¢

ﬁlA(N_l)j w; =0 at X=1-93

wy = 0 at X =1
5. Numerical results and comparisons

The natural frequencies of vibration are calculated by the differential quadrature
method and are presented together with results from another method: using a
combination of a Holzer-type iterative procedure and an initial value integration

12

procedure by Veletsos et al. ) and Austin and Veletsos . Here, the values A

corresponding to the lowest natural frequencies of vibration neglecting the effects of
rotatory inertia and shearing deformation have been evaluated for hinged and fixed
arches having angles of opening 45° 90°, and 180°, for a wide range of the
slenderness ratio, S/r. Representative data for this and other cases are tabulated in
Tables 1 and 2. The values of A corresponding to the lowest natural frequencies
including the effects of rotatory inertia but neglecting shearing deformation have

been calculated for hinged and fixed arches 8, = 90° for a wide range of the
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slenderness ratio, S/r. The results are summarized in Tables 3 and 4. All results

are computed with & = 1x107°.

- Table 1 : Fundamental frequency parameter, A = wSz( m/ EI)U 2 , for simply

supported thin arches including mid-surface extension

S/r g, Veletsos al.(1972) DQM
11.78 18.08 18.080
17.28 25.25 20.247
23.56 33.32 33.317
47.12 q0 ° 33.82 33.823
117.8 33.94 33.941
251.3 33.96 33.956
377.0 33.96 33.956
7.85 18.26 18.254
15.71 180 ° 21.37 21.375
47.12 2221 22.269

Table 2 : Fundamental frequency parameter, A = wS?(m/EDY? |

arches including mid-surface extension

for clamped thin

S/r 8y Veletsos al.(1972) DQM
2% 2733 2733
50 45 30,03 39.04
100 60.08 60.108
125 26.35 26.352
50 55.37 55.326
100 55.73 55.723
150 . 5578 55785
200 90 55.81 55.803
250 5581 55.821
300 55,82 55,821
500 55,84 55,830
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Table 3 : Fundamental frequency parameter, A = wS*(m/EDY?, for simply
supported thin arches including mid-surface extension and effects of

rotatory inertia ; 6 ¢=90"

- .
S/r Austain & Veletsos(1972) DQM
23.56 32.55 32.542
47.12 33.60 33.601
70.69 33.80 33.808
94.25 33.87 33.867
1414 33.92 33.926
1885 33.94 33.941
251.3 3395 33.956
314.2 33.95 33.956
377.0 33.96 33.956

Table 4 : Fundamental frequency parameter, A = wS*(m/EI) 1z , for clamped thin

arches including mid-surface extension and effects of rotatory inertia ;

60=90"
S/r Austain & Veletsos(1972) DQM
25 37.81 37.815
50 54.98 54.973
100 55.63 55.615
150 55.74 55.732
200 55.79 55.779
250 55.80 55.776
300 55.81 55.803
350 55.83 55.812
400 55.83 55.812

| 500 55.84 55.812

6. Conclusions
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The differential quadrature method was used to compute the eigenvalues of the
equations of motion governing the free in-plane extensional vibrations of curved
beams. The present method gives results which agree very well with the numerical
solutions by other methods for the cases treated while requiring only a limited
number of grid points.
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