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Study on Boundary Mass Transfer Phenomena in Liquid
Laminar Flow around Hollow-Fiber Membrane
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Introduction

To design a membrane device that contacts liquid phase, we have to know the
boundary mass transfer coefficient for the liquid phase. For a flat membrane,
experimental and/or theoretical approach to obtain a boundary mass transfer
coefficient is easy, but for a hollow-fiber membrane, especially for the
outside of the membrane, very difficult. In this paper, the methods to observe
boundary mass transfer phenomena in liquid phase around a hollow-fiber
membrane are presented with discussion about some data.

Theory

Boundary mass transfer phenomena of a solute in laminar flow in a circular
tube are theoretically derived as follows on condition that solute
concentration at the wall is constant;

Sh = 1.62{ReSc(d/L)}'" 1)

where Sh (= kd/D) is Sherwood number [-}, Re (= ud/v) Reynolds number
[-}, S¢ (= D/v) Schmidt number [-], d inside diameter of the tube [m], L
length of the tube [m], D diffusion coefficient of the solute [m?%s], u mean
fluid velocity [m/s], and v kinetic viscosity [m?/s].

For liquid laminar flow in a circular-tube annuli, 4 in Eq. (1) is generally
replaced with hydraulic equivalent diameter, d, [m] (= [cross-sectional
area)/[perimeter]). *

Experimental

The Liquid-gas contact

Kanamori et al. ¥ have reported boundary mass transfer phenomena around a
single hollow-fiber membrane for liquid-gas contact using an apparatus
shown in Figure 1. According to “Theory”, Figure 2 is obtained from the
data measured for four hollow-fiber membranes for clinical membrane
oxygenator. “Eq. (14)” in the legend is equal to Eq. (1) in this abstract. The
slopes of the plots, which are corresponding to the power number of Re in Eq.
(1), are nearly 1/3, except the data for PDMS, for which they have pointed
out the influence of the vibration of the membranes due to their flexibility.
Liquid-liquid contact

Kanamori et al. ¥ have revealed that Eq. (1) holds for the outside channel of a
single hollow-fiber hemodialysis membrane which is fixed on the axis of a
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Figure 1 A schematic view of the apparatus for liquid-gas contact.
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Figure 2  Boundary mass transfer phenomena
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channels;

around a single hollow-fiber membrane for liquid-
gas contact.

Sh = 1.80ReSc"”(d,/L)". (2)
Accordingly, the authors studied boundary mass transfer phenomena around
a single hollow-fiber membrane using a new apparatus shown Figure 3 to
clarify the cause of the disagreement between Egs. (1) and (2).”
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A schematic view of the apparatus for liquid-liquid contact.

were calculated at each outer flow rate using so-called the Wilson plots. 7
Figures 4 represent the boundary mass transfer phenomena obtained for the
hemodialysis membranes with lower (a) and higher (b) water permeabilities,
respectively. These results indicate that with increasing water permeability of
the membrane and molecular weight of the solute, the power number of Re,
(shell side) increases.
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Figure 4

Boundary mass transfer phenomena around a single

hollow-fiber membrane for liquid-liquid contact.

Discussion

In this study, boundary mass transfer phenomena in liquid laminar flow
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around hollow-fiber membrane are discussed. For liquid-gas contact which
has no influence of convective flow through membrane, the power number of
Re in the dimensionless equation for the outer boundary mass transfer is
almost 1/3 which is theoretically obtained. For liquid-liquid contact on
condition that the lumen of a single hollow-fiber membrane is stagnant, the
power number is also almost 1/3. The system used for this study is similar to
those with which these results have been obtained, however only one point
that there is convective flow through membrane is different.

The power number of Re obtained in this study is larger than 1/3, meaning

the influence of the flow rate is higher. Although the measurements were

carried out so as to keep net filtration negligible, the pressure gradients along
the membrane corresponding to the inner and outer flow rates caused local
convective flux through the membrane. So, the disagreement between Egs.

(1) and (2) in the power number of Re is considered to be due to the local

convective flux. On the other hand, the disagreement in the power number of

(d,/L) may indicate that hydraulic equivalent diameter, d,, is not applicable to

shell-side channel where many fibers are packed at a high density.
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