Financial Application of Time Series Prediction based on Genetic Programming

  • 발행 : 2000.10.01

초록

We have been developing a method to build one-step-ahead prediction models for time series using genetic programming (GP). Our model building method consists of two stages. In the first stage, functional forms of the models are inherited from their parent models through crossover operation of GP. In the second stage, the parameters of the newborn model arc optimized based on an iterative method just like the back propagation. The proposed method has been applied to various kinds of time series problems. An application to the seismic ground motion was presented in the KACC'99, and since then the method has been improved in many aspects, for example, additions of new node functions, improvements of the node functions, and new exploitations of many kinds of mutation operators. The new ideas and trials enhance the ability to generate effective and complicated models and reduce CPU time. Today, we will present a couple of financial applications, espc:cially focusing on gold price prediction in Tokyo market.

키워드