제어로봇시스템학회:학술대회논문집
- 제어로봇시스템학회 2000년도 제15차 학술회의논문집
- /
- Pages.15-15
- /
- 2000
펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크
Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function
초록
In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.