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Abstract. The main objective of this paper to purpose a evaluating methods of
process capability measures for exponential distributed quality characteristics.

For correctly evaluating process capability , the first thing , exponential data is
applied the Lilliefors test statistic to the null hypothesis of nornality. The next ,
exponential parameters is estimated in terms of MLE , ME , MME and then
evaluated , respectively , process capability index based on exponential curved (I,)

proposed by in this study and process capability indices based on Pearson system
and Johnson system.
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curves(I,) , Pearson system , Johnson system.

I . Introduction

A common , assumption in capability studies in that the individuls in the process
being follow a normal distribution.

If this is not the case, especially when the underlying probability distribution in
heavily skewed , then the conclusions of the study are likely to be invalid.

Yet , acceptable replacements for the process capability indices based on a
normal distribution are available , if we could only determine the underlying
distribution.

To solve this problem , the first thing , exponential data is applied the Lilliefors
test at statistic to the null hypothesis of normality.

The next exponential parameters is estimated in terms of the maximum likelihood
estimators(MLE), a modification of the moment estimators(MME) and the moment
estimators(ME) and then evaluated , respectively , process capabiliy index based on
exponential curves(I,) proposed by in this study and process capability indices on

Pearson system and Johnson system.
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II. The Lilliefors Test for the Exponential Distribution and
parameter Estimatian

The two-parameter exponential distribution has (cdf , pdf) and hf

F(xo,p=1-exn(-*2F) , x>r @1
f(x,ﬁ,r)=—éexp(— x;r) (2.2)
h(xyﬁ,r)=—é 2.3)

Where €>0 in a scale parameter and r is both a location and a threshold
parameter. For =0 this in the well-known one-parameter exponential distribution.
The mean and variance of the exponential distribution are , respectively,

EX)=r+0 (2.4)

Var(X)= 6° (2.5)
The P quantile of the exponential distribution is

x,=7r—log(1—p) @ (2.6)

The exponential distribution in widely used in the field of reliability engineering
as a model of the time of a component or system. In these application , the
exponential distribution is a popular distribution for some kinds of electronic
components as an example , capacitors or robust , high-quality integrated circuits.

But , this exponential distribution would not be appropriate for a population of

electronic component having-causing quality defects.
The exponential distribution in usually inappropriate for modeling the life of
mechanical components like bearing , subject to some combination of fatigue |,
corrosion , or wear. It is also usually inappropriate for electronic components that
exhibit wearout properties over their technological life like lasers and filament
devices[1].

2.1 The Lilliefors Test for the Exponential distribution
The data consist of a randome sample X, X,,..., X, of size n associated with

some unknown distribution function , denoted by F(x). Compute the sample mean
for use as an estimate of the unknown pasameter. For each X,; , compute Z; ,

defined by
Zi=X;| X 2.7
for use in conputing the test statistic.
First , the empirical distribution function S(x) based on Z,..., Z, in plotted on a
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graph . On the same graph the function F*(x)=1—e ™" is plotted for x>0 ; actually
, only values at n point need to be determined , the points being at x=2;, x=2,, and so
on. The maximum vertical distance between the two functions

T=S§/’P | F'(x)—S(X) (2.8)

in the test statistic [2].

2.2 parameter Estimation

(1) Maximum Likelihood Estimator (MLE)

The density approximation to the likelihood generally provides an adeguate
approximation for the exponential distribution. For a sample consisting of only
right-censored observation and observations reported as exact failure times , it is
easy to show the MLE of 6 is computed as

p=-TIT 2.9)
v
Where TTT= ;Zl in known as the total time on test , and ¢ , =1, .., n, and

the reported failure times for units that failed and the running (or censoring) time
for the right-censored observations[1].

(2) Moment Estimators (ME)

Moment Estimators (ME) of the exponential distribution are derived by equating
sample moments to the corresponding distribution moment.

The first two moments are given by E,.(24) , E,(25) and the resulting ME
equations are

B=s, r=x—s (2.10)

Here , x is the sample mean , and s is the sample standard deviation [3].

(3) Modified Moment Estimators (MME)
Modified Moment Estimators[3] are variations of MLE and ME that employ the
first-order statistic X, , usually replacing the ME equation involving the third

moment by one comparing the smallest observation with X
E(X ) =r+-2 @.11)
and the MME equation are
x=r+0, xp= r+-L (2.12)

n
from which we get
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n—1 n—1

IM. Process Capability Measures

3.1 process capability index based on exponential distribution curvers (7I,)

The process capability index over the Weibull distribution process by Mukherjee[4]
1S given by

R F Y (p3)—F 7 (py)
_ 8 Y u-1)

[—logQ—p)]*—[—log(1—p D1 * (3.1)

Here , We consider a quality(reliability) characteristic (x) having the exponential
probability density function.

PO R (3.2)
’ 6 0 .

Where @ U , L = upper and lower specification limits , respectively , for the
quality characteristics( x).

@ —1=scale parameter of the exponential distribution.
17}

pg=mean time to failure = 4

o= standard deviation of time to failure = &

t; , t, =lower and upper limites, respectively , of the process
capability interval (also called the natural process interval)

R=t,—t,

e 6

p1 , Py = areas under the exponential distribution curve to the left
of t; and ¢, . Thus , ¢; and ¢, are just the quantiles of the
exponential distribution of order p, and p, , respectively.

C=p,—p, = the area to be covered by the capability interval.
Similarly , process capability index based on exponential distribution curves (7,)

may be obtained from the process capability index over the Weibull distribution (I)
U-L _ U-L
R F Y p)—F Xpy)

I=

L(-1
[—log(1—2)]— [—logQ—p))]

(3.3)
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As an estimate of the process capability index , I, works out as

Lw-p
[—logQ—p,—O1—[—log(1—py)]
=(U-DG( ™) (34)

=

Where 3 'is MLE

3.2 Process capability Index based on the Pearson System

The Process capability Index are numerical quantities whose purpose is to
indicate to what degree the output of a process is capable of staying within
preassigned specifications , the so-called spec limits , when the process is in
control. The condition of being in control is indicated on a control chart when all
data points lie within certain control limits and no apparent trends or patterns are
present.

Process are operated at some target , or nominol , value and have an upper limit
USL and lower limit LSL. The standard process capability indices for normal
distribution are

c,=-BL=L5L (35)
and
Cu= min{ US%G— £ L _3€“SL }= min(C,, C,) (36

Clenents[5] has developed a tecknique for adjusting C, or C, non-normal

situations based on Pearson curves , the so-called the percentile method is
proposed. In this case , the formulas

— USL—LSL
Cﬁ P0.99865 - P0.00135 (3.7)
and
= USL x—LSL \_ _.
Cpk_{ Pogwss—x x— Poouss }— min(C 4, C 1) (3.8)

are usually used , although there are good reasons for replacing x here with the
median P

In these formulas , P,=F !(fis the ¢ th percentile of the true distribution
function F. when F in unknown , and assumed non-normal , E,.(3.7) and (3.8)

may be used to compute a reason approximation to F.
3.3 Process Capability Index based on the Johnson System
Johnson provided an alternation to the Pearson systems of curves for modeling
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non-normal distribution. His approach to start with a small set of curves capable
of approximating the shape of wide specturm of probability distribution and then to
find simple transformations that would convert these curve into the standard normal
, or Z distribution. For S, curves (lognormal) , the Johnson transfornation can be

witten
Z=7r"+yln{x—e) (3.9
Farnum(6] is used Johnson curves to desribe non—-normal process data

Cu= min(—Zzs—U,—%L')=min(C,,u, C) (3.10)

where Z, Z; mean the specification limits USL and LSL values , respectively.

IV. Ilustrative Example
To illustrative the use of the Lilliefors test for normality , as gien by Owen and

Li[7]lead to exponential data

0029 0046 0133 0194 0265 0287 0322 0433 0441 0.464

0483 0528 0606 0789 0940 1681 1766 2014 308 3.279

To evaluate process capability , We will use upper specification limit USL=3 for
these data.

4.1 The Lilliefors Test for the Exponential Distribution
(1) Hypotheses
H,: The random sample has the exponential distribution
P = 1- e 20 (41)
Where ¢t is an unknown parameter
H,: The distribution of X in not exponential

The largest absolute deviation between S(x) and F*(x) is seen to equal 0.1559.

The null hypothesis of an exponential distribution may be rejected «=0.05 only
if T exceeds 0.2345 (n=20, 1- @ =0.95).

Since 7=0.1559 , the null hypothesis is accepted.

(2) Parameter Estimation

@ MLE

Fron E,(29), it is given an #=0.8894
@ ME

Fron E,.(2.10), it is given an 8=0.9670
® MME
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Fron E,.(2.13) , it is given an $=0.9057

4.2 Evaluation of Process Capability Measures
(1) Process Capability index based on exponential distribution curves (1I,)

@ MLE
From the table of Mukherjee et al.[8]

for k=1 , the process capability index I.,= U/3.912¢

Hence , the estimated process capability index is

_ 3 _
Ie="Gam0.8m =%
It indicates that the process is nearly capable.
@ ME
Similarly , the estimated process capability index is
— 3 _
o=@ 0"
@ MME
Similarly , the estimated process capability index is
_ 3 _
Ie="Gam0 .0 = 0%

(2) Process capability indices based on the Pearson system
As computed from example , We get the statistics of sample as follows:

2=0.8894, median Po5=0.369, Pooss=3.628, Poonx=0.153, 0=0.9670

Hence , the estimated process capability indices are C,=0.86 and C,=0.82.

It indicates that the process is nearly capable.

(3) Process capability index based on the Johnson system

To choose appropriate Johnson curve , a discriminant function by Slifker and
Shapiro[9] applied in this example S, distribution.

Then , on numerical computation , We get Z=0.5770+0.7973 In(x—0.009)

Hence , the estimated process capability Index is

Cu=Sr=LM g8

It indicates that the process is very poor.
The evaluation of process capability measures on the above-mentioned system
are tabulated in the table 1.
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Table 1. The evaluation of process capability measures

Process Capability Population Type
Methods Indices | Exponential Distribution | Pearson System | Johnson System
of Parameter Estimation (I.) C ? C bk C Pk
MLE 0.86"
ME 0.79 0.86° | 082 0.48
MME 0.85°
Capability *nearly capable *nearly capable very poor

V. Summary and Conclusions

The main objective of this paper to purpose a evaluating methods of process
capability measures for exponential distributed quality characteristics.

For correctly evaluating process capability , the first thing , exponential data is
applied the Lilliefors test statistic to the null hypothesis of nornality. The next ,
exponential parameters is estimated in terms of MLE , ME , MME and then
evaluated , respectively , process capability index based on exponential curved (I.)
proposed by in this study and process capability indices based on Pearson system
and Johnson system.

Form calculated results in the table 1 , it makes little difference the MLE , MME
method and Pearson system. These vlaue indicates that the process in nearly
capable. The ME method is not good in this example. With sample data , a
suppose case , We will be accept the lognormal in favor of process capability for

lognormal distribution is estimated @,,k=0.48, namely , Johnson system is

underestimated than the others.
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