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Abstract

This paper introduced a scheme for finding an

optimal association matrix that represents the
relationships between the measurements and tracks
in multi-target tracking of Radar system. We
considered the relationships between targets and
measurements as MRF and assumed a priori of the
associations as a Gibbs distribution. Based on these
assumptions, it was possible to reduce the MAP
estimate of the association matrix to the energy
minimization problem. After then, we defined an
energy function over the measurement space, that

may incorporate most of the important natural

constraints,

1. Introduction
The primary purpose of a multi-target tracking
(MTT) system is to provide an accurate estimate
of the target position and velocity from the
measurement data in a field of view. Naturally, the
performance of this system is inherently limited by
the measurement inaccuracy and source uncertainty
which arises from the presence of missed detection,
false alarm, emergence of new targets into the
surveillance region and disappearance of old targets
from the surveillance
difficult to
corresponds to each of the
Although trajectory
problems have been well studied in the past, much

region. Therefore, it is

determine  precisely which

closely

target
spaced
measurements. estimation
of this previous work assumes that the particular
target corresponding to each observation is known.

Recently, with the proliferation of surveillance

systems and their increased sophistication, the tools
for designing algorithms for data association have
been announced.

In this paper, we derive the new model for data
association which reflects the natural constraints of
the MTT problem and convert the derived model
into the minimization problem of energy function
by MAP estimator [1].
function is calculated by Lagrange multiplier,[2]

The coefficients of energy

and local dual theory[3].
2. Problem
Energy Function

Formulation and

Fig.1 shows the overali system which consist of
acquisition, association and prediction. Our primary
concern is the association part that must determine
the actual measurement ad target pairs, given the
measurement and the predicted gate centers.

) i 0
— Acquisition Association

x(k)
Puediction

Fig. 1. An overall scheme for target tracking

Let m and n be the number of measurements and
targets, respectively, in a surveillance region. Then

the validation matrix w [3] is :
w={w,|jell,m],te[0,n]} (1)

where the first column denotes clutter and

always wj, Based on the validation matrix,
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we must find hypothesis f'I1at1'ix[4],
é(={d,1jell.mlte(0.n]) that must obey the

following natural constraints:

Yé,=1 for (jellm)

=0

;2),,51 for (te[Ln]) @

QThe ultimate goal of this paper is to find
the hypothesis matrix given the observation y
and x, which must satisfy (2). Let’s associate
the realizations the gate center X, the

measurement y,‘ the validaton matrix w, and

@ - to the random processes X>Y.€% and Q.

Next, consider that Q is a parameter space
and X.Y.Q,
posteriori can be derived by the Bayes rule:
P(@| D)P(y,x| @) p(@)

is an observation space. Then a

P(@|@,y,x)=

P(®,y,x) (3)
We assume the parameter Q,Q are given and
(X,Y) are observed. If the conditional
probabilities describing the relationships
between the parameter space and the
observation spaces are available, one can
obtain the MAP estimator:
@ =argmax,; P(d|@,y,x) )

As a system model, we also assume that the

conditional probabilities are  all Gibbs
distributions:
o 1 R
P(y,x|®)= 7exp{—E(y,x | @)}
]
N 1 .
Plo|d) = —exp{-E(w|d)}
ZZ
R 1 N
P@) = —Z—eXP{—E(w)} 5)

3
where iZ:(S€[1,23] is called partition function:
Z,= [ _exp{-E(@)}dd )

Here, E denotes the energy
Substituting (5) into (4), (6) becomes

function.

@ =argminx,[E(y,x|®)+ E(@|d)+ E(®)] (7

The first term in (7) represents the distance
between measurement and target and must be
minimized using feasible events. The second
term intend to suppress the measurements
which are wuncorrelated with the valid
measurements. The third term  denotes
constraints of the validation matrix and it can
be designed to represent the two restrictions.
The energy equations of each term are defined

respectively:
E(x16) = >3ra,
ata
| Ew|d) = "12(0‘),,—%)2
Lo
E@) = i(ié-/’—])+i’(iﬂ@f’_l) @
Sl yles

Putting (8) into (7), one gets
& =argmax,fa) Y r,d, +§ZZ(@]_I ~0,)?

1=l j=1 =1 j=l

+> 36, -0+ 38, -1] o

=1 j=t =0
where i = (%,4,, —yjdx,)z/(df, +dyzl), and a
the weighted
the matching term

and f are . parameters of
distance measure and
respectively.

3. Design of Optimal Adaptive

Data Association Scheme
The optimal solution for (9) is hard to find by
any deterministic method. Instead, one can
convert the present constrained optimization
problem to an unconstrained problem by
introducing Lagrange multipliers ad using the
local dual theory{5]. The problem is to find
such that where

L(a’\),ﬂ"g) = az":irjla’)jl +_’;_ii(a’>ﬂ _wf’)z
1 4=I

=t j=I =14
+ZI/1,(ZI@,-1 —1)+;51(Z;“"ﬂ - (10)
1= Jj= = =

Here, A and & are just Lagrange multipliers.
Note that (10) includes the effect of the first
which

newly

column of the associated matrix,

represents the clutter as well as



2000 @E EMEHE - A2 B4 B B0 PR AXR 1B 1N /7

appearing targets. In general setting, we
assume m>n, since most of the multitarget
problem is characterized by many confusing
measurements that exceed far over the number
of original targets.
Since (10) is a

the extrema,

function which

the convex

convex
guarantes using
analysis for the local duality, the optimal

solution can be obtained by

(@ ,4 ,¢ )=argm£axmlaxxgzn(x)1[,(w,l,e) an

The necessary condition for achiving extreme
in (10) are

V,, L(@,4.6) = 0
V. Ld,Ae) = 0
V, L(@,Ae) = 0 (12)

Using - (12), one obtains the final

representations of the solution:

03;1 = {ﬁwjl_w.jl(l_al)_il_g]}/ﬁ
. Vi 1
A = -=(+d, J)-— A&,
, m( anS0) m,.z:;f"( )
. . 1 & _ -
& = gj+#[__Z{ﬂ(wjl_wl)—a(l_al)(r]l—’;)}]
n+l%g
(13)
which & means optimal value of _s at any
scan.
(13) contains two parameters @ and fB. To
obtain these parameters, we consider the
ML(maximum likelihood) estimation: Given
(w,y,x), @ is estimated as a maximum

likelihood estimate such that

@:argmgxP(w,y,xla?’G) (14)

where @E[alﬂlr. Unfortunatley, although the
ML is unique if it exists, the ML estimation is
computationally  prohibitive due to the
calculation of the partition function. Therefore,
as an alternative of ML, MPL(Maximum

Pseudo Likelihood) is considered. In the MPL

estimation, (@,,x|0,0) g represented as a
product of local partition function:

P, x| @,@,0)P(é|w,0)P(w|©)
P(@]©)

=TT T2 expt-070,)}

=0 =i

Plw,y,x|0,0)=

(15)

z

where i is a local partition function:

Z,= Azkexp{—arj,a")ﬂé, -, ~w,)’] 6

and cost function @) is

1@ 0,
3@, ~w,)’ 17

It is proven that (16) is strictly concave with

®<a“>_,,>={

respect to ® if and only if the parameters
that comprise @ are linearly independent with

each other. Therefore, @ can be found from

the gradient search method:

00 .
Ay v/ P
po UV log Plw,y, x| w,0) (18)

Putting (15) into (18) arrives
0™ =0 -V, InP(w,y,x|3,0)|, .

=@V -~ #Z Z[¢(d)/1 ) - 71;7 Z(D(é\)h )exp(__@r’ (D(‘Z,]’ ))]

=0 j=l @y

19)

where 1 and 7 are an updating constant and
an iteration index, respectively.

In fig. 2, we show the overall computational
flow structure. Its structure consists of the
two parts: data association and parameter
updating. The data block
transforms the input data into the energy

association

equation to obtain the feasible matrix. Inside
the block, first
Finally, feasible matrix,
The parameter estimation block updates the

is calculated and then
will be calculated.
previous input and

parameter using the

feasible matrix data.
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Fig 2. Overall flow diagram of optimal data
association algorithm

According to the overall computational flow

structure, the computational complexity

simplified as numbers of

association  and

analysis is
multiplications in  data
parameter updating. Suppose that there are n
targets and m measurements. And assume that

the average iteration number of ¢/ and A s

k, and k., respectively. In this case, A and

£’s computation in the data association stage

require and . The necessary computation of

the feasible matrix extractions is
multiplications.  Therefore the

multiplications required in the data association
part iSO((IzI +i‘_2 +Dmn)

4. Conclusion
In this paper, we have developed the optimal

number  of

adaptive data association scheme for radar
multi-target tracking system. This scheme is
designed to determine all pararneters
automatically and requires multiplications. We
have confirmed that all parameters converge to
steady states in the data association capability

simulation and tracking accuracy is superior to

that of JPDA about 5.2% in view of tracking
accuracy under the clutter density of c¢=04.
The superiority of this scheme to the JPDA
comes from two important points. At first, this
scheme used course weighted distance
compared to the averaged weighting distance
of JPDA. Under the heavy clutter ambient,
target’s direction is more important than the
correct posttion. The second is that the new
algorithm can reject the irrespective plots from
the validation matrix by incorporating the

matchirig term in the energy equations. .
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