데이터융합, 앙상블과 클러스터링을 이용한 교통사고 심각도 분류분석

Data Fusion, Ensemble and Clustering for the Severity Classification of Road Traffic Accident in Korea

  • 손소영 (연세대학교 컴퓨터 과학·산업시스템공학과) ;
  • 이성호 (연세대학교 컴퓨터 과학·산업시스템공학과)
  • 발행 : 2000.04.01

초록

계속적인 증가 추세를 보이고 있는 교통량으로 인해 환경 문제뿐 아니라 교통사고로 인한 사상자 및 물적피해가 상당량으로 집계되고 있다. 본 논문에서는 데이터융합 및 앙상블 클러스터링방법을 이용한 교통사고 심각도 분류분석방법을 제안함으로서 교통사고예방에 기여하고자 한다. 이를 위하여 신경망과 Decision-Tree기법을 이용하여 얻은 물적피해와 신체상해가 발생할 확률을 융합하는 전형적인 데이터 융합기법(템스터-쉐퍼, 베이지안 방법, 로지스틱융합방법)을 사용하였다. 또한, 분류정확도를 향상시키고자 Bootstrap 재추출 방법을 이용해 얻어진 여러 개의 분류예측 결과 중 다수의 분류결과를 선택하는 앙상블 (arcing, bagging)기법을 적용하였다. 더불어, 본 연구에서는 클러스터링 방법을 제시하고, 이 방법이 기존의 융합기법, 앙상블기법과 비교한 결과, 분류예측면에서 정확도가 향상됨을 보였다.

키워드