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Abstract

We investigate some properties of commonly used residual plots in linear regression and
provide some systematic iusight into the relationships among the plots. We discuss three
issues of linear regression in this stream of context. First of all, we introduce two graphical
comparison methods to display the variance inflation factor. Secondly, we show that the role
of a suppressor variable in linear regression can be checked graphically. Finally, we show
that several other types of standardized regression coefficients, besides the ordinary one, can
be obtained in residual plots and the correlation coefficients of one of these residual plots
can be used in ranking the relative importance of variables.

1. Introduction

Consider the standard regression model

y=XB+ ¢ (1.1)
where y Is an #nX1 response random
vector, X is an #nXp data matrix and B

is a px1 parameter vector to be estimated.

We assume that the random vector €
follows N(0, o*I).
Scientific investigators are often

confronted with the problem of explaining
the of
particular cause of variability. Therefore, it

residuals  after removal some

1s sometimes convenient to extend model

(1.1) to include an extra carrier 2z into the

model as follows

y=XB+yz+ e (1.2)

Let’s assume that the extra carrier 2z is

coming into the model in one dimension for
the time being. When the extra carrier =z
is not needed to explain the wvariability of

v not accounted for - X, then the reduced

(1.2). A vice versa situation is possible. The
decision between model (1.1) and model
(1.2) is always difficult in practice. Three
possible causes of this difficulty are first of
all, the size of the magnitude of effect of

z, secondly the possible association among
the variables, and lastly the functional form

of 2z entering the model. In model (1.2), we

assume that 2z enters in linear functional

form, but this is not necessarily true.

Sometimes 2z enters the model nonlinearly.
There
containing this topic.

In this article, we consider the following
four residual plots for obtaining a graphical
the effect of adding an

are many statistical literatures

evaluation of

explanatory variable =z.

[1] The simple residual plot
[2] The partial residual plot.
[3] The added variable plot

[4] The additional R® plot-

The simple residual plot is sometimes
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introduced as a part of regression modelling
as can be seen in Atkinson(1985). The
partial residual plot has a long history,
going back to Ezeikel(1924). The added
variable plot is also called a partial

regression plot. It is another useful plot for

checking the effect of an additional

regressor. The additional R? plot is given
in Guttmann(1982). This plot will be further
explained as the paper progresses.

In most textbooks about the regression,
the residual analysis immediately follows
after mathematical treatment of the least
squares method for estimating the
parameters in  the linear regression.
Furthermore, the residual plots themselves
are often treated in dealing with the overall
check of the model only. As a result, the
residual analysis sometimes put the students
into difficulties in understanding how it
contributes to the process of regression
model build-up. Each of the four Dplots
mentioned above is related to each other.
Therefore, much more information can be
obtained from the residual plots with careful
comparison of them.

In this article, we mentioned three issues;
1) variance inflation factor, 2) suppressor
variable and 3) its related issue, ranking of
variables in the model. We explain the
mechanism of residual plots to show that
these three issues can be
graphically using four plots.

analyzed

The three issues mentioned above will be
discussed in the sequence in sections 2, 3
and 4. Conclusion will be made in the 5th

section.

2. Variance Inflation factor

It can be shown that the estimated slope
3'* of the simple residual plot is related to
% under the full model (1.2) as

Y= 0-RL)Y 2.1)

where REX is  the coefficient of

determination when =z is regressed on X.
It is immediate (although not explicit in
the literature) from equation (2.1) that

Y/ =1/(1—R%) (2.2)

which is just the variance inflation factor

VIF' for z, VIF,. Thus, the comparison

of 3' and 3'* will give us an idea of how
large VIF, will be. For their graphical
comparison, we need a plot in addition to
simple residual plot. Since the x-axis of
simple residual plot is =z, the plot that has
the same x-axis is the most appropriate
one. We propose that the partial residual
plot is the one to be compared with. It is
well known that the slope of the partial
residual plot is the same as the one in the
full model (1.2).

VIF', can also be presented as the ratio

of R? associated with the simple residual
and added variable plot as follows:

VIFZ = Vzadd/ 7/231',” (23)

where 7’25,~m and ﬂadd are the correlation

coefficients associated with the simple

residual and added variable plot,

respectively. Note that the 7 in the simple
residual plot is always smaller than one in
the added variable plot. Both of equations
(2.2) and (2.3) will be useful in presenting
the variance inflation factors of variables.

3. Suppressor Variable

We teach in class that as we add a

variable to the model the value of R?
increases monotonically. But we usually do
have mis-conception about the delicate

mechanism of this R’. We take the usual
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notations

SSR(X, z) = SSR(X) + SSR(z|X)

where SSR denotes the regression sum of
squares and SSR(z[X) is the extra sum

of squares obtained after entering 2z.
Hamilton(1987) mentioned that sometimes

SSR(z!X)>SSR(z) is caused by the

entering variable zZ. Sharpe and

Roberts(1997)
variable, a wvariable that increases the

named 2 a suppressor

importance of another variable when it is
added to the regression. Although this
phenomenon is rare in real data analysis, it
happens under some certain conditions.
Hamilton (1987) showed that the following
was the necessary and sufficient condition
for his claim

7;}.2.)( > TZ)z(I_sz) (31)

The lefthand side of (3.1) is the squared
partial correlation coefficient. Weisberg(1985,
p. 40) has mentioned that when the

association reflected by 7 in  added
variable plot, which is just the squared

correlation coefficient between y and =z

given X is greater than 7fz then X and

z interact to explain more than the sum of

RiX and 7. Obviously he did not take

into consideration the effect of RZy.
Therefore, we had some thoughts to devise
a proper and simple graphical comparison.
Note that #4,.x(1—R%) is just the
additional increase of R? when the variable

z enters the model. It can be shown that
although the y-axis is different from the
one in the added variable plot, the estimated
slope of the additional R? plot is the same

as the one in full model (1.2). But since the
residuals are different from the ones in the

full model, it is not frequently used in
practice, unlike the added variable plot. Still
it would be helpful to explain the concept of

the additional increase of R? graphically.
Furthermore it is nice to get additional
information about the peculiar issue raised
by Hamilton(1987).

When the additional R? plot shows much
stronger association than the simple plot of

y vs z, then we say the sum of SSRs
due to individual X and 2z is less than

the overall SSR due to both X and =z.

4. Standardized
Coefficient

Regression

In most social science research work
there are some interests concerning the
rank of relative importance of different
variables in the model. Statistical packages
such as SPSS provide the printouts on the
denoting the

standardized coefficient

following relationship between usual Ay and

the standardized coefficient B, for z

B,=7xS,/S,

where S, and S, are the standard

deviation of the wvariables =z and v,
respectively. But many people make
cautionary remarks that the rankings of the
standardized

absolute magnitude does not necessarily

coefficients in terms of

reflect the importance of variables in

explaining the variability of y. Many
textbooks give warnings against the misuse
of this automatic computer generated output.
But none of the textbooks had explained the
relationship  between  this  standardized
coefficient and the correlation coefficients of
various residual plots. The correlation

coefficients of the plots from [1], [2], [3],

- 375 -



2
=
X
2
ol
_|ot

5+3] /3= 73 of 38k3] 2000 AT E &

3 =23, 20009 49 21-229. ZdHEgR

Session 0C6.2

and [ 4] are computed algebraically as

follows:
(1] 7* - S./(S, - V1—R)

[2] % S,/V SE(1—R,. x)+ PS2
4.1)

(31 %- (S;V1-R%)/(S,-V1-Ry)

(SZV ]-_—REX)/Sy

(4] 7-

From (4.1), we immediately see that all of
these correlation coefficients are other

measures of standardized regression
coefficient except those
adjustments taking place in each formula in
(4.1). And this suggests that the appropriate
correlation coefficients may be wused in
ranking the relative importance of variables.
The appropriate correlation coefficients are

those associated with [3] and [4].

appropriate

5. Conclusions

We have made some useful remarks on
the commonly cited residual plots in linear
regression to get additional information
about 1) the VIF, 2) the suppressor
variable, and 3) the interpretations of

correlation coefficients.
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