A-Linear-Time Algorithm to Find the First Overlap in a Binary Word

A Linear-Time Algorithm to Find the First

Overlap in a Binary Word

Thomas H. Park
Router Software Team, Router Technology Department

Electronics and Telecommunications Research Institute

thomas@etri.re.kr

Abstract

First, we give a linear-time algorithm to find the first overlap in an arbitrary binary

word. Second, we implement the algorithm in the C language and show that the number of

comparisons in this algorithm is less than 31s, where n 23 is the length of the input word.

1 Introduction

Kfoury developed a linear-time algorithm to decide
whether a binary word is overlap-free [2]; his algorithm
can be adapted to find the first overlap in an arbitrary
binary word in linear time. Here we take a new look at the
latter problem and develop a linear-time algorithm for it,
and then show that this algorithm runs with a relatively
small increase in the proportionality constant.

Concerning notation and terminology, late Greek
letters (7, p and 7) will denote variables ranging over the
set of possible words, and late Roman letters (x, y and z)

will stand for individual symbols from finite alphabets.

2 The Algorithm

Formally, a word p contains an overlap if it contains
a finite sub-word of the form pzp’ such that pr = zp’,
where p, 7, and p’ are non-empty[1]. The sub-word ris

called the overlap. The input to the algorithm is an

arbitrary input € {0, 1}". Since the algorithm finds the first
overlap in input, if there is any, it is easy to show that the
length of the overlap is always 1. At the nth iteration, n 2 1,

it carries out the following steps:

step 1. If inpur, € {0, 1, 00, 11}, there is no overlap.

step 2. Decompose input, as zpo,7", With 7z, 7, € {A, 0, 1,
00, 11} and g, € {01, 10}". If this is not possible,
find a overlap using FIND_OVERLAP. If input, has
more than one such decomposition, take 7, as short
as possible.

step 3. If 7z, = xx, withx € {0, 1}, and xxx or ®xxxx isa
prefix of 7,0, find a overlap using FIND_OVERLAP.

step 4. If 7',= yy, with y € {0, 1}, and yyy or Jiyy is
a suffix of p,7, find a overlap using
FIND_OVERLAP.

step 5. If (z,= x and xx) and (z’,= y or yy) and (xpy = 77
for some 7 € {0, 1}°) then go to step 6 else go to
step 7.

step 6. Define input,,, from MAPPING2(z,, p,, 7’,) by

200058 ABEFILEG ZFHo28W LG mXE HF23%F F1H 2000/6

mapping consecutive occurrences of 01 and 10 into
0 and 1, respectively, and go to the (n + 1)st
iteration.

step 7. Define inputn+1 from MAPPINGI(7x,, p,, 7’,) by
mapping consecutive occurrences of 01 and 10 into
0 and 1, respectively, and go to the (» + 1)st

iteration.

As shown in above steps, functions such as
FIND_OVERLAP and MAPPING! & MAPPING2 are
defined in more detail in the following section. It will
explain how BACKTRACKING functions are being called
up, and how the MAPPING functions are used to reduce the
binary string.

3 Some functions used in the
Algorithm

A function DECOMPOSE decomposes a binary
string array input as zpon’; with z, 7', € {A, 0, 1, 00, 11}
and p; € {01, 10}". p[j] and g[/] are pointers to 7; and 7°;,
respectively, at the jth iteration. If the binary input has
more than one such decomposition, take m; as short as
possible.

A function SELECTION determines whether the
binary string array /mput can be divided as follows:
xpy = refor some re {0, 1}°, where 7z=x or xx and 7;=
y or yy. SELECTION returns True, if it is possible and False,
otherwise.

A function PATTERN finds a overlap which occurs
at the jth iteration. It returns the length and the starting

index of the overlap at the jth iteration.

A function FIND_OVERLAP finds a overlap which occurs
in a binary string input by calling BACKTRACKING
recursively. Since the array flag indicates which mapping

function was used at the jth iteration, FIND_OVERLAP calls

either BACKTRACKING1 or BACKTRACKING2 according to
the array flag.

The functions BACKTRACKING1 and BACKTRACKING2
update length and start_index variables, which are the length
and the beginning index of the first overlap at every iteration,

according to the following conditions:

8 BACKTRACKINGI
(i) If start_index = 0 and length is equal to the
length of the input string at the jth iteration,
then

length < length*2-2, if r=xand z'=y;
length < length*2—1, otherwise.

(ii) If start_index = 0 and length is shorter than the
length of the input string at the jth iteration,
then

length < length*2—1.
start _index « start _index+1, if 7=xx.

(iii) If start_index 0, then

length - length*2 —1.
start _index « start _index*2 -1, if n=x;

start _index < start _index* 2, otherwise.

® BACKTRACKING2
@) If start index = 0 and length is equal to the
length of the input string at the jth iteration,
then

length « length*2 1.

start _index « start _index+],
if #=xand r'=yoryy;

start _index < start _index +2,
if m=xxand 7'=yoryy.

(ii) If start index = 0 and length is shorter than the

length of the input string at the jth iteration,

~166-

A-Linear-Time Algorithm to Find the First Overlap in a Binary Word

then

. ® MAPPING2
length « length* 2 —1.

start_inde x < start_inde x +1, ,
fr=m =24
if t =xx and n'= A; . o . ,
(o) = <xxp, fx=xorxxandz =4,
start_inde x « start_inde x +1, .
- - oy, if = Aorxorxxandz =y oryy;
ift =xand '=yor yy;

start_inde x « start _inde x + 2,

L ifr=xxandn'=yor yy.

4 Analysis of Algorithm

(iii) Ifstart_index # 0, then We can get an estimate for the proportionality constant in

length < length * 2 — 1 the time complexity of the algorithm as follows. Suppose n

start_index « start_index * 2 — 1, is the length of the input string. Each function performs the
if = x and T = A;

start_index < start index * 2,

following number of comparisons:

if =Aorxx andr’ = 1;
start_index < startindex * 2 + 2,
if #=xx and x =yoryy;
start_index <« start index * 2 + 1,
if 7=xandx =y oryy;

start_index <« startindex * 2,

ifr=Aandzx’ =yoryy,

We define the functions MAPPING] and MAPPING? from {0,
1} to {0, 1}". They are defined for all words of the form
zpn’, where z, 7' € {A,0,1,00, 11} and p € {01, 10}, and

by:

® MAPPINGI

o, ifr=n=4
xxp, if 7=xorxxandz = 4;
Y, if 7= Aandz = yoryy;

xxpyy, if z=xorxx, andz = yoryy

-167-

number of comparisons for DECOMPOSE is at
most 6n (each iteration of the while loop has at
most 4 comparisons and there are »/2 iterations
and the entire while loop has a possibility to be
performed at most three times).

number of comparisons for MAPPINGI (or
MAPPING?2) is at most n/2 (only one of three
while loops can be performed and each iteration
of the while loop has one comparison and there
are n/2 iterations).

number of comparisons for SELECTION is at
most n/2.

number of comparisons for PATTERN is at most
n+6.

number of comparisons for FIND OVERLAP is 9
log » (each iteration of the while loop has at most
9 comparisons and there are at most log »
iterations).

number of comparisons for BACKTRACKING1
(or BACKTRACKING?) is at most 7.

2000F & K Mkg mXE F23% F1H% 20006

&
&
<N
H
8
m
pu
A
Kind
o>
48
_ﬁ

Since n + (n2) + (W4) + < 2n and the function
PATTERN and FIND _OVERLAP are performed at most
once, the running time of the algorithm is less than (6 + 1.2
+1/2) *2n+n+9logn+ ¢ =151+ 9log n + ¢, where c is
the cost incurred in each step which is less than 19 logn+ 6
(2 comparisons for each of step 1 and 2, 4 comparisons for
each of step 3 and 4, and 7 comparisons for step 3, and
multiplied by the maximun number of iterations).
Therefore, the total number of comparisons in this

algorithm is 15n+ 28 log n+ 6 < 31n, where n > 3.

References

[1] T.H. Cormen & C.E. Leiserson & R.L. Rivest.
Introduction to Algorithms. McGraw-Hill, 1990.

[2] A. J. Kfoury. A Linear Algorithm to Decide whether a
Binary Word Contains an Overlap. Theoretical Informatics
and Applications, 1988.

[3] A. Salomaa. Jewels of Formal Language Theory,

Computer Science Press, 1981.

XXXXXXX

-168-

