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Abstract
This paper introduces a new structure for the undecimated
discrete wavelet transform (UDWT). This structure

stationary wavelet transform with a lifting
scheme and its design is based on a polyphase structure,

combines the

where the downsampling and split stage are removed. The
suggested structure inherits the simplicity of the lifting
such that the easily
implemented. The performanace of the proposed undecimated

scheme, inverse transform is

lifting is verified on a signal denoising application.

1. Introduction

The discrete wavelet transform (DWT), based on the
octave band tree structure, decomposes an input signal
using a set of low and high pass filters followed by a
decimator. The traditional DWT has exerted a remarkable
influence on several signal processing applications such as
denoising, estimation, and compression. However, in signal
denoising, the DWT is known to create artifacts around
the discontinuities of the input signal These artifacts
degrade the performance of the threshold-based denoising
algorithm. It has been shown that many of the artifacts
could be suppressed by a redundant representation of the
signal [1].

The undecimated discrete wavelet transform (UDWT)
differs from the traditional DWT because it does not
employ a decimator after filtering. This is also known as
the redundant or translation invariant DWT. There are
several implementations of the UDWT,
stationary and the translation invariant (cycle-spinning)

such as the

wavelet transforms [1, 2). The absence of a decimator
leads to a redundant input signal representation. This
makes a denser approximation to the continuous wavelet
transform than that of the DWT. The translation invariant
property of the UDWT makes it preferable for use in
various signal processing applications, as it relies heavily

on spatial information [3].

In this paper, we propose a new structure for the
UDWT, based on the lifting scheme. This structure can be
described as the upsampled predict and update steps
without the split stage. The new structure maintains the
same performance as other UDWTSs, yet it inherits some
benefits through the use of the lifting scheme. These
benefits are the integer-to-integer transform and the design
simplicity of the inverse transforms.

2. The lifting scheme

Lifting has been developed as a flexible tool used for

constructing second generation wavelets in complex
geometries and/or imregular sampling. It also provides an
efficient method for the construction of biorthogonal
wavelets. The inverse wavelet transform is easily computed
by reversing or undoing the steps of the forward
transform. This leads to an efficient overall implementation
of the wavelet transform. Moreover, every FIR wavelet or
filter bank can be decomposed into lifting steps in the
polyphase form [4, 5].

Lifting, a space-domain construction of biorthogonal
wavelets, consists of the iteration of the following three

basic operations

Split. Divide the original data into two disjoint subsets.

For example, we will split the original data set x{#x]
x n]l=2n},
xJn]=x{2n+1], the odd indexed points.

into the even indexed points, and

Predict: Generate the wavelet coefficients ¢[n] as the
error in predicting x,[#] from x[#n] using prediction
operator P:

dl n] = x,[ n] — P(x I n])
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Update: Combine xJ[n] and d[n] to obtain scaling

coefficients ¢ »] that represent a coarse approximation

. to the original signal xf #]. This is accomplished by

applying an update operator U to the wavelet
coefficients and adding to xf x]:

d nl=xl nl+ Uld n])

Aoyt o it

Figure 1. Lifting stage: Split, Predict, Update
3. Design of an undecimated lifting

With the traditional (orthogonal, maximally-decimated)
denoising, we suffer from visual artifacts; pseudo-Gibbs
oscillations in the neighborhood of discontinuities are
caused by the lack of translation invariance of the wavelet
basis. When using Haar wavelets, a discontinuity precisely
at location /2 will lead to essentially no pseudo-Gibbs
oscillations; a discontinuity near a binary irrational like
n/3 will lead to significant pseudo-Gibbs oscillations. To
artifacts,
translation-invariant denoising [1].

Let X= Wx be the (orthogonal) DWT of x and Sj; be
a matrix performing a circular right shift by R with
ReZ. Then

suppress these we've chosen the

X,= Wxs= WSpx= WSp W' X 1)
which establishes the connection between the wavelet
transforms of two shifted versions of a signal, x and «x,,
by the WSz WL
transforms, all circular shifts of the input signal are
calculated and the denoised output signals are averaged in
the reconstruction [1}.

To develop an undecimated or translation-invariant lifting
scheme, the processing of the stationary wavelet transform
is converted into lifting steps. First, the DWT is
represented in the polyphase form of the lifting scheme
and then the decimator and upsampler are removed. We
upsample the lifting operators during the progressive stages
of processing. Fig. 2 shows the polyphase implementation
of the lifting scheme. The predict and update stages are
written by the polyphase matrix E(2)= U(z) P(2),

orthogonal matrix Using these

E(z) = I{(z[)j(l;(z)
_ z

= [0 Pl 4o 1 @

— [ P(z)U(Z) U(z)]

— P(2) 1

x[n] = F—» c[n]

P(z) U(2)
—» d[n)

E(z)=U(2)P(2)
Figure 2. Lifting scheme in the polyphase implementation

P(z) and U(z) are the predict and update
operators respectively. In the case of a 4-point predict and
update, P(z) and [Xz) are given by

where

P2 = pz' + pd + prt + pdt 3)

U2) = wz % + wz ' + w2 + wz' @)

Using noble identities, the lifting steps are rearranged as
in Fig. 3.

x{n] eln]
E(z%)
z d[n]

Figure 3. Rearranged polyphase representation

Now, we have:
E(&) = [ P(zz) U(zz) U(zz)]
1 U(zz) 1 0
[ 0 ] -2 1 ©)
= U( 2) P(z)

Removal of the decimators results in undecimated lifting.
In practice we do not actually advance the input data

E (2%, we add
after the polyphase matrix. Finally, we can combine
the matrices and redraw the system in Fig. 3. The

E ,(2) is

x[n]. To put z into a polyphase matrix
-1
z

undecimated analysis matrix

E ,(2)

N

IR e s O
[ 1—- )U 22) ZZU(ZZ)] (6)
—Z(zl;)(z 1

[0 7N

1p(2% (1)]
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For perfect reconstruction, z is inserted before the
synthesis polyphase matrix R(z%?) and 2z lafter the
maxtrix R (z%) disappears.

R.(2) = [(1) qu][ A2 1- Pzzlzj)(é?zz)][(ll 0]
_ 1 —2l(zY ()

z P 1

From equations (6) and (7), we can verify that the
condition of perfect reconstruction is satisfied.

R.(2) E (=1 ®

The undecimated 4-point predict operator P,(z) and
update operator [U,(z) are:

Pl2) =z P = p1z 3+ ppz T+ pi2t + 22 (9)

Uf2) = 2L(2% = w273 + wpz ' + waz' + w2 (10)

Figs. 4 and 5 show the iterations of the undecimated
lifting which construct the forward and inverses UDWT.
For convenience, the normalization of the scaling and
wavelet coefficients is omitted. To apply the inverse
UDWT, we simply undo the forward lifting steps and
divide the reconstructed signal by two for energy
normalization.

Hn}j—p—

Figure S. Structure of the inverse undecimated lifting

4. Wavelet denoising

4.1. Wavelet Shrinkage
Wavelet shrinkage, as defined by Donoho [6), refers to a

denoising technique consisting of a wavelet transformation
of the noisy signal, followed by a shrinking of the small
wavelet coefficients to zero while leaving the large
coefficients unaffected. Finally, an inverse transformation is
performed to acquire the estimated signal. This technique
is effective in removing Gaussian noise. The energy
compaction property of the wavelet transform tends to
concentrate the signal energy into a relatively smail
number of large coefficients, and the problem of removing
Gaussian noise simplifies to extracting the few coefficients

of the useful signal that are significantly large.

4.2. Wavelet Domain Empirical Wiener Filtering

However, for any given signal, the MSE-optimal
processing is achieved by the Wiener filter which delivers
substantially improved performance. In [7] is developed an
algorithm for wavelet denoising that uses a wavelet
shrinkage estimate as a means to design a wavelet-domain
Wiener filter. The algorithm uses two different wavelet
bases, one for computing the estimate and the other to
implement the Wiener filterr The Wiener (filter's

coefficients, h,(7), are computed as:

2
oy = —2 D an
wet o

e

where w,(7) represents the wavelet coefficients of the
wavelet shrinkage estimate.

Figure 6. Wavelet-domain empirical Wiener filter

5. Simulations

—-— !

A series of signal denoising simulations are provided to
verify the performance of the proposed undecimated lifting.
Donoho's test signals are corrupted by white Gaussian
noise (standard deviation of 2) and the signals are rescaled
so that the standard deviation is 10. Hard threshold-based
denoising (db8) and the empirical Wiener filter ( W, : db4,
W, . db8) are then applied to the DWT, UDWT, and
undecimated lifting with 4-point ( W, : 2-point, W
4-point) predict and update operators.

Tables 14 show the MSE results of denoising 4 signals
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based on 9 different algorithms. The simulation results
show that the undecimated lifting leads to the same results
as the Donoho's UDWT.

Table 1. Blocks signal

Transform Estimator MSE
Hard threshold 1.801190
DWT Empirical Wiener 0.701631
Ideal Wiener 0.614485
Hard threshold 0.790288
UDWT Empirical Wiener 0.571506
Ideal Wiener 0.488356
Undecimated Ha1td. threshpld 0.641246
. Empirical Wiener 0.547932
Lifting Ideal Wiener 0.398759
Table 2. Bumps signal
Transform Estimator MSE
Hard threshold 0.983686
DWT Empirical Wiener 0.668808
Ideal Wiener 0.449471
Hard threshold 0.584863
UDWT Empirical Wiener 0.526534
Ideal Wiener 0.381648
Undecimated Har.d_ thresh'old 0.575987
o Empirical Wiener 0.513663
Lifting Ideal Wiener 0364545
Table 3. Heavisine signal
Transform Estimator MSE
Hard threshold 0.424377
DWT Empirical Wiener 0.266778
Ideal Wiener 0.200360
Hard threshold 0.323468
UDWT Empirical Wiener 0.279084
Ideal Wiener 0.179480
Undecimated Har.d. thresh‘old 0.303638
. Empirical Wiener 0272126
Lifting Ideal Wiener 0.175064
Table 4. Doppler signal
Transform Estimator MSE
Hard threshold 1.003690
DWT Empirical Wiener 0.636168
Ideal Wiener 0.349193
Hard threshold 0.506817
UDWT Empirical Wiener 0.457991
Ideal Wiener 0.282942
Undecimated Har‘d. thresh.old 0.415673
. Empirical Wiener 0.390641
Lifting Ideal Wiener 0259437

6. Conclusion

We have presented a new structure for the UDWT. It
combines the stationary wavelet transform and the lifting
scheme to generate a lifting version of the UDWT. This is
accomplished by removing the downsampling and split
stage of the lifting. For further simplification we inserted
the unit delay after the analysis polyphase matrix and we
inserted the unit advance before the synthesis polyphase
matrix. Using different denoising algorithms, it's proved
that the undecimated lifting has the same performance as
the other UDWT. In addition, the proposed structure
inherits the lifting scheme's simplicity in the design of the
inverse transform.

Since the undecimated lifting makes use of the lifting
scheme, the applications of the undecimated lifting could
be extended to situations with irregular sampling and/or
complex geometry.
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