20004Ef& #8130 53R RFE & [224k

DSP Performance Maximization with Multisample

Technique

* Hosun Lee, ** Lawrence K.W. Law, *** Youngyear! Han

* Motorola Korea Inc, ** Motorola Semiconductors Hong Kong Ltd., ¥** Department of Electronic

Communication Engineering, Hanyang University, Seoul, Korea.

R10394 @email.mot.com

ABSTRACT
In this paper, we present multisample DSP coding
technique for StarCore, SC140 DSP. The muitisample
programming is a pipelining technique that exploits
operand reuse both coefficients and variables within
kernel. A coefficient or operand is loaded once from
memory and then the value may be used by multiple
ALUs. It is possible to evaluate one intermediate
product from each of four output sample calculations in
parallel. Therefore, parallelization has been achieved by
processing multiple samples in parallel rather than
multiple intermediate products belonging to only one
sample. The benefits of decreasing the number of
memory moves per sample is to increase the algorithm
performance. In this paper, the multisample technique
has been implemented in FIR filter calculation using

Motorola StarCore DSP development tool.

I. INTRODUCTION
The StarCore 140 in Figure | is a low cost, low power,
'high performance, high flexibility programmable
géneral purpose fixed-point CMOS DSP core with the
3" generation DSP Archnitecture that efficiently
deploys a novel Variable Length Execution Set (VLES)

execution model utilizing maximum parallelism by

allowing multiple Data and Address ALUs to execute

multiple operations in a single clock cycle. A Data
Arithmetic Logic Unit (DALU) performs arithmetic
and logical operations on data operands in the
Star*Core 140 core. The Star*Core 140 has 4
Arithmetic & Logic units in the DALU. Four instances
of a single-cycle Multiplier-Accumulator (MAC) Unit
with automatic saturation capability and four instances
of a Bit Field Unit (BFU), each with a 40-bit barrel
shifter capable of executing a variety of single-bit and

multi-bit logic and shift operations.

Quad Access Unitied

i Data/Program Memory i

20 S » 1 ¢ .-.H“.gz‘:
ﬁ e :

—_——

1] Program Addmlaumwmw 'J'l“ do niE™
&qmaar

b
'
]
|

|| Accoterator
|
s ome ;
A]

|uLuaI | Sanester J1 ,I

Pl 1

u__":‘*‘_"i”i"l“_‘l“:‘__ o3 : y

Figure 1. StarCore 140 Core Block Diagram

All the MAC and BFU Units can access all the DALU
registers. Each register is partitioned into 3 portions: 2
sixteen bit registers (low and high portion of the
register) and one 8 bit register (extension portion). The
low and high parts of each register can be either inputs
for the arithmetic operations, or as part of the 40 bit

registers as output for the operation result.

-471-

II. MULTISAMPLE TECHNIQUE
Multisample programming is a pipelining technique
that exploits operand reuse (both coefficients and
variables) within the kernel. A coefficient or operand is
loaded once from memory. The reuse of operands is
similar to data caching and the register file acts as a
data cache, allowing ALUs fast access to operands
without accessing memory. The multisample
programming technique can be applied to algorithms
with alignment restrictions or bit-exact requirements.
The multisample technique’s reuse of operands relaxes
the alignment requirements for loading operands. This
allows simpler operand addressing, and effectively
solves the problem of memory bus bandwidth, operand
alignment, or limited algorithm parallelism when using
multiple ALUs. Although not obvious, multisample
algorithms provide the same bit-exact results as single-
sample algorithms. This is possible because the
algorithm performs the same exact operations, but with
a different pipeline. This is important for algorithms
requiring bit-exact compliance, such as speech coders.
Multisampie algorithms are ideal for block processing

where data is buffered and processed in groups such as

speech coders.

x(n) 4 DSP P y(n) x(n),x(_n; DSP
x(n+l),>¢ Kernel .’y(n+l) Kernel | y(n),

y{n+1)

A.. Multiple Sample Algorithm B. Single Sample Algorithm

Figure 2. Multisample and Single Sample Kernels

111 IMPLEMENTATION
Implementing a DSP algorithm such as an FIR
filter requires trade-offs between the number of

samples processed simultaneously and the number

of ALUs. As the Kernel computes more samples
simultaneously, the number of memory loads
decreases because data and coefficient values are
being reused. However, to obtain this reuse, more
intermediate results are required, which typically
requires more

registers in the processor

architecture. It is theoretically possible to
compute an algorithm faster by using more ALUs.
To do this, some degree of parallelism is required
in the algorithm to partition the computations.
Although computing a single

ALUs s

sample with
multiple theoretically possible,
limitations in the DSP hardware may not allow
this style of algorithm to be implemented. In
particular, most processors typically require
operands to be aligned in memory and multiple
operand load and stores to be aligned. Let’s
consider the direct-form FIR filter for the example
of common DSP kernel written in multisample
form. Although the direct-form FIR filter is one
of the simplest DSP kernels, it uses a majority of
the features of the DSP architecture: input data
samples and coefficients, a multiply-accumulate,

and pointer arithmetic. To illustrate the point,

consider the FIR filtering operation described by:
N=1

ym= Y c(@i)x(n—i), for 0<n<L
i=0

Past input samples are multiplied by coefficients. The
products are added together to form the output. In order
to make use of the four ALUs, the operations can be
grouped as illustrated in the tfollowing step.
Stepl: Characterize the Algorithm

In characterizing the algorithm, four input samples are
grouped together. Coefficients and delays are loaded
and applied to all four input values to compute four

output values. Using four ALUs reduces the execution

~472-

time of the filter to 25% of the execution time of a
single ALU filter. The data flow for a quad-sample FIR

filter is shown in Figure 3.

o oxn % « = ow o«

53 3 3§ 3% % 3
cor e =

vyvey 114

[4 ALUs |
Coefficients Past Input Samples

Figure 3. FIR Filter Data Flow

Step 2: Develop the Generic Kernel
This step is achieved by writing the equations for
sample that is processed, and determining the reuse
pattern. To develop the FIR filter equations for
processing four samples simultaneously, the equations
for the current sample y(n) and the next three output

samples — y(n+1), y(n+2) and y(n+3) shown in Figure 4.

y() =x(n) CO + k(n-1)C1+ K(n-2) C2 4x(n-3)C3+k(n-4)C4

y(n+l)=§ x(n+1)C0+ x(n) Cl+ k(n-1)C2 +k(n-2) C3+k(n-3) C4

y(n+2) = x(n+2)CO#x(n+1)Cl# x(n)C2+ k(n-1) C3+k(n-2) C4

y(n+3) =;‘x(n+3)C0-ii x(n+2)Ci+4x(n+1)C2+ x(n)C3+x(n-1)C4
i

group O group ! group 2 group

Generic Kernel

Figure 4. FIR Filter Equations for Four Samples

The generic kernel characteristics for the FIR filter

include the following:

- The kernel utilizes four parallel MACs.

- One coefficient is loaded and used by all four
MAC:s in the same generic kernel,

- One delay value is loaded, used by the generic
kernel, and saved for the next three generic kernels.

Three delays are reused from the previous generic

kernel. To develop the structure of the quad-ALU
kernel, the filter operations are written in parallel and
the loads are moved ahead of where they are first used.
Step 3: Determine the Requirements of the
Generic Kernel
The generic kernel in this example requires four MACs
and two parallel loads. In order to make use of the four
ALUs, the operations can be grouped as illustrated in
the following equation in Figure 4. The products and
accumulations within each group are calculated in
parallel but the groups themselves are evaluated in
sequence. Therefore parallelization has been achieved
by processing multiple samples in parallel rather than
multiple intermediate products belonging to only one
sample. Note also that when one group (e.g.Group 2)
has been evaluated, only two words of data need to be
loaded for the next group (Group 3): C3 and x(n-3).
The other values needed for the calculations in Group 3
(x(n-2), x(n-1), and x(n)) should already exist in DSP
registers from the calculation of Group 2. This results
in reduced memory bandwidth requirements, thereby
increasing the code efficiency.
Step 4: Rewrite the Generic Kernel
This step involves creating a basic kernel by rewriting
the generic kernel to take maximum advantage of the
resources of architecture. In the FIR filter example,
assuming there are at at least four coefficients in the
FIR filter, the generic kernel is replicated to create the
basic kernel.
Step 5: Optimize the Basic Kernel
This step is achieved in the FIR example by folding the
coefficient and delay loads. An important thing of this
kernel is that only two data moves are required, yet all
four ALUs maintain full operand bandwidth. The
number if loop passes is reduced to 25% of the filter

size to compensate for the generic kernel being

-473~

duplicated four times in the basic kernel. The total
speed remains the same as the single instruction generic
filter. The following is program example for single

sample and multisample algorithm.

A. FIR Filter Program using single sample algorithm
main()
{long L_acc; short m,n,i;
for(m=0,n=12; n<112; n++,m++)

{ L_acc=0;
for(i=0; i<12; i++)

{

L_acc += a[i] * x[n-i]; }

y[m] = (short)L_acc;
}

B. FIR Filter Program using Multisample algorithm
main()
{long L_acc0=0,L_acc1=0,L_acc2=0, L_acc3=0;
short m,n,i;
short V_d0O,V_d1,V_d2,V_d3;
for(m=0,n=12; n<112; n++,m+=4)
{
V_d0 = x[n];V_dl = x[n+1];
V_d2 = x[n+2};V_d3 = x[n+3];
for(i=0; i<12; i+=4)
{
L_accO +=a[i] * V_d0; L_accl +=a[i] *V_dl;
L_acc2 +=afi] * V_d2;L_acc3 +=afi] * V_d3;
V_d3 =x[n-i],
L_accO +=a[i+1]*V_d3; L_accl +=a[i+1] * V_do0;
L_acc2 +=a[i+1] * V_dl; L_acc3 +=afi+1] *V_d2;
V_d2 = x[n-i+1];
L_accO += a[i+2] * V_d2; L_accl +=afi+2] * V_d3;
L_acc2+=a[i+2]*V_d0;

L_acc3 += ali+2]*V_dl;

V_dl = x[n-i+2];

L_accO +=a[i+3] * V_dl; L_accl += afi+3] * V_d2;
L_acc2+=a[i+3]*V_d3;L_acc3+=a[i+3]*V_d0;

}

y[m] = (short)L._acc0O; y[m+1] = (short)L_accl;
y[m+2] = (short)L_acc2; y[m+3] = (short)L._acc3;

)

IV. CONCLUSION
As an advantage of the technique, it preserved the bit-
exact output results with high level of parallelism
which is better than the conventional split summation
technique. It is possible to eliminate the register-to-
register transfers by expanding the inner loop such that
each group of four MAC instructions uses the data
registers that already contain the required data values.
This yields faster code but has greater code size. After
simulating using Motorola StarCore DSP simulator, the
summary of main multisample technique characteristic

is in the table 1.

Table | Inner Loop Characteristic of Multi-sample technique

Characteristics Single-sample Multi-sample
Algorithm Algorithm
Cycle count N N/4
Registers used Fewer More
Sample delay 1 4
Number of 2N N/2
MEemory moves
Code size Small Large
REFERENCES

1. Star*Core

140 Architecture Functional

Specifications Rev.0.63

2. Star*Core Application Note: Multisample

programming technique
3. SC140 DSP Core Reference Manual

-474~

