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Abstract : In this paper, a method of estimat-
ing second-order Volterra model with ARCH errors
is presented. Then we use an ECLMS algorithm for
noise canceling of nonlinear time series. The validity
of the proposed method is demonstrated for estimating
second-order Volterra model with ARCH errors, using
computer simulations.

I. Introduction

Traditional econometric models assume a constan-
t one-period forecast variance. To generalize this im-
plausible assumption, a new class of stochastic process-
es called autoregressive conditional heteroskedasticity
(ARCH) processes[1] were iatroduced in Engle(1982).
These are mean zero, serially uncorrelated processes
with nonconstant variances conditional on the past,
but constant unconditional variances. This type of
model has been already proven to be useful in modeling
several different economic phenomena[2]. In these pa-
pers, maximum likelihood estimation of the linear re-
gression model with ARCH error was discussed. How-
ever, it is well known that there exists the nonlinearity
in economic time series by empirical research. It is dif-
ficult to analyze the nonlinear time series. Estimation
method for nonlinear time series is very complicated.

Recently, the correlation least mean squares(CLMS)
algorithm(3] and the extended CLMS(ECLMS) algo-
rithm[4] have been proposed to solve the double-talk
problem in the echo canceling system. The charac-
teristic of ECLMS algorithm is to utilize the correla-
tion functions of the input signal instead of the in-
put signal itself. The theoretical investigations for the
stability bound of step size of the ECLMS algorithm
has been obtain and proved. Noise signal is separated
from observed signal by ECLMS algorithm. Therefore,
the estimation performance is considerably improved.
However, ECLMS algorithm is derived, based on the
linear filter. Therefore, this algorithm does not use
for nonlinear time series. To solve this problem, we
propose the ECLMS algorithm for nonlinear economic
time series.

Some recent results on the design and implemen-

tation of second-order Volterra filters are presented.
The Volterra filter is a nonlinear filter with the filter
structure of Volterra series. A simple minimum mean-
square error solution for the Volterra filter is derived,
based on the assumption that the filter input is Gaus-
sian. Using second-order Volterra filters in proposed
algorithm, make it possible to consider wide range ap-
plications. Some numerical examples are presented to
illustrate that the proposed method can work well for
estimating nonlinear time series with ARCH errors.

II. ECLMS for Volterra model

The purpose of this pater is to derive second-order
Volterra ECLMS algorithm for economic nonlinear
time series. We consider the second-order Volterra fil-
ter in the form of

it = 3 ae-)
j=0
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where a; and b; are called the linear and quadratic
filter coeflicients, respectively and N is length of the
filter tap coefficients. As the first term of eqn.(1) is
linear part, we can easily treat it based on [4]. There-
fore, to avoid unnecessary complication in notation, we
consider only second term of Volterra filter as follows:

N-1N-1

yt) =) D bika(t - s)a(t— k)

7=0 k=0

(2)

The observed signal z(t) is given by
z(t) = y(t) + u(t) (3)

where u(t) is ARCH process noise. The ARCH process
noise is created by conditional specification method[5]

as follows:
u(t) = Vh(t)e(t) (4)
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where h(t) is described by

h(t) = o2(t) = 8o+ drul(t — 1) + Sru’(t — 2)

+o3u(t — 3) + -+ + SpuP(t — p) (5)
and ¢(t) is white Gaussian with variance=1. Then, we

define the correlation function C...(p,q) between the
observed signal z(t) and z(t — p)z(t — q) as follows:

E[z(t)(t — p)=(t — 9)] (6)

where E[-] denotes the expectation operator.
the ergodic property eqn.(6) can be rewritten as

szz(py q) =

Using

Cron(p,0) = Jim z@nu~ Pei—a) (7
and approximated as follows:
t
szz(t’pa q) = m pare z(z)w(z - p)w("’ - q) (8)

By substituting eqn.(3) into eqn.(8), C:z=(t,p,q) be-
comes:

(9)

Furthermore, as u(t) and z(t — p)z(t — g) are two inde-
pendent signals, Cyz.(t, p, g) is almost zero. Therefore,
C:z2(t, p,q) becomes:

z:u:(t P (I) yzz(t P:.q ) + Cuu(t,P, Q)
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where
¢x=:=(t1 3k, p Q) =

% S (i - j)z(i — K)a(i - p)a(i — q)
i=0

Also, the Gaussian monent facorization theory [6] is
given by

E[z(t — j)z(t — k)z(t — p)z(t —9)] =
Elz(t — j)z(t — k)| Elz(t — p)=(t — q)]
+E[z(t — j)(t — )} Blz(t — k)=(t — p)]
+E[z(t — j)z(t — p)IEz(t ~ k)=(t —q)] (11)

Therefore, we have the following relation:
= ¢a::|:(t,j - k)¢:m(t,p - Q)

+¢ca: (t’j - q)¢zz(t1 k-~ p)
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(12)

where
¢:z(t j— k) t+ 111 Zm(l - ]):z:(z - k)
i=0

As a result, eqn.(10) is represented by matrix form as

folllows: R R
C.2s(t) = Ceoue(t)B(2) (13)

where

ﬁ(t) = [Eo.o(t),go,l(t), e ygN—l,N—l(t)]T

C.oa(t) = [Cuae(t,0,0), C.ua(t, 0, 1),
zzz(t,N_ 1vN_ 1)]T
sz:z(t) z::z(t 0 1)

[ ::::z::(t 0, 0)
. Q::zzz(t’N - 1’ N - 1)]T
[¢::u:z (t, 0,0,p, Q), D2z (t, 0,1,p, q)v

"1¢z:z:(N‘1)N_11p:q)]

szzz(t; Db, ‘I) =

On the other hand, as the z(t) is Gaussian with zero-
mean value, all odd order moments of z(t) are zero[6].

Bla(t - )alt - k)=t —pl=0  (19)

Therefore, estimation of quadratic filter coefficients is
not effected by linear filter coefficients. In the same
way, estimation of linear filter coefficients is not ef-
fected by quadratic filter coefficients. The linear and
quadratic filter cofficients are estimated in parallel.

Next, the estimation error signal vector e(t) for the
correlation function is defined as follows:

e(t) = Cuaa(t) — Crzez(t)B(t) (15)
where
C.zz(t) = [C222(t,0,0), Czaz (2,0, 1),
-, Caze(t, N =1, N - 1))T
e(t) = [e(t,0,0),e(t,0,1),--,e(t, N - 1, N — 1)
Then we define the cost function as follows:
7 = Ele" (t)e(t)] (16)

Based on the LMS algorithm , we can derive Volterra
ECLMS algorithm as follows:

B(t) + 2uC .. (t)e(t) (17)

where p is the step size for the tap coefficients. The
adaptation algorithm, which is normalized to the pow-
er of the input correlation function to ensure sufficient
conditions for convergence, then becomes:

B(t+1)=
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Our purpose is to estimate aj, b; and d; from ob-
served signal z(¢). The output of y(t) esimated by the

B(t + 1) = B(t) proposed algorithm and y(t) are shown in Fig.2.
+ o (Me(®)  (18)
1 + tr [C:zx:(t)ciezzz(t)] zzzz 6 i
5+
where tr[] shows the trace of a matrix and 4l
0<po<1 g 3
2 2
The proposed estimation system is shown in Fig.1. ‘_El 1
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Fig.2. Estimated Signal %(t) and y(t).

- - To measure the performance of this algorithm, we use
Correlation Correlation p g !
EZI MSE;(t) defined by the following equation:

+
- E[{y(t) — 9(t)}?
 Volteia MSEy (t)=101log,, [{yé[)yz (ty)g W (a9
1
|Copy|
f E ti
l Outputs of Estima onl Figure 3 shows the convergence of MSE;(t) for the

Volterra ECLMS algorithm.
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We demonstrate that it is feasible to estimate % -5t al
second-order Volterra model with ARCH error by E- I 10t
CLMS algorithm. Sample system is assumed as fol- g votterra ECLMS
lows: -15
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Fig.3. MSE;(t) of estimated output signal.

ECMLS algorithm (N=10,30)[4] hardly converges at
about -3dB. However, the proposed Volterra ECLMS
algorithm shows steady convergence at about -20dB.
Then we note that the Volterra ECLMS algorithm has
good convergence.

To measure the performance of the algorithm, we
use M SE,(t) defined by the following equation:

—0.045801 0.078566 —0.055801

0.088566 —0.045801 0.095514
0.095514 —0.055801 -—0.051434

X(t)=[ z(t) =t—1) =(t-2)]"

The input signal z(t) is AR process given by

2(t) = —0.92(t — 1) + €(t) (20) MSE,(t)=10logyg 2+ (23)
The observed noise signal u(t) is ARCH process given Z a +;} ;,Zo b
> u(t) = \/f_zzae(t) (21)  where
where €q = i:(a,-—a,-)z, ep = 22: i(bij—iij)z
h(t) = 1+ 0.32u2(t — 1) + 0.12u3(t — 2) i=0 =i
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Figure 4 shows the convergence of M S E;(t) for Volter-
ra ECLMS algorithm.
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Fig.4. M SEy(t) of estimated filter coefficients.

The Volterra ECLMS algorithm shows steady conver-
gence at about -20dB. Then we note that the Volterra
ECLMS algorithm has good performance of coefficient
estimation.

Next, we consider maximum likelihood (ML) esti-
mation of the ARCH model. The log likelithood fun-
cion[1][7] is as follows:

T ~2
= 7 Y- 3 los(h(0) - 3 )

t=0

(24)

where

a(t) = y(t) — ATX(t) — te[BX())X" ()]

h(t) = dg + Jlﬁz(t - 1) + Jzaz(t - 2)

To measure the performance of the algorithm, we use
M SE(t) defined by the following equation:

e.teptes

2 2 2
IO IADN:
i=0 =0

i=035=0
where
2 2 2 =
ea = D (a:—:)%, en= ) (bi;—bij)
i=0 i=0j=0
2 -~
e = Z(&—Ji)z
=0

The MSE of coefficients is shown in Table.1.

The proposed method(Volterra ECLMS + ML esti-
mation) has a better convergence characteristics com-
paring with the ML estimation.

Table.1. MSE of coefficients.

MSE
ML estimation(ai, bi,j,J,-) -13.25[dB
VolterraECLMS(a;, b; ;)+ML(4;) | -20.47[dB

IV. Conclusion

We have proposed the estimation method for second-
order Volterra model with ARCH errors. Coeffi-
cients in second-order Volterra model are calculated
by Volterra ECLMS algorithm. Coefficients in ARCH
process are calculated by ML estimation. The valid-
ity of the proposed method was verified by computer
simulations. '
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