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Abstract

In this paper, a new hierarchical motion estimation
(ME) scheme using the wavelet transformed multi-
resolution image layers is proposed. While the coarse-to-
fine (CtF) ME, used in previously proposed coding
schemes, can provide a better estimate at the coarsest
resolution, it is difficult to accurately track motion at
finer resolution. On the other hand, in fine-to-coarse
(FtC) ME, it can solves this local minima problem by
estimating motion track at the finest subband and
propagating the motion vector (MV) to coarser subband.

But this method causes to higher computational overhead.

This paper proposes a new method for reducing the
computational overhead of fine-to-coarse multi-
resolution motion estimation (MRME) at the finest
resolution level by searching for the region to consider
motion vectors of the coarsest resolution subband.

I . Introduction

Wavelet transform is a valuable tool in video
processing because of its flexibility in representing
nonstationary signals. Wavelet-based compression has
the advantages of efficient decorrelation of image frames
and reduced-complexity  multiresolution  motion
estimation. Several motion estimation techniques have
been proposed in the wavelet domain. The coarse-to-fine
(CtF) motion estimation techniques '™l generally
have a lower complexity at the expense of inaccurate
estimation. Several reason of inaccurate estimation are
exited. Firstly, it is the potential for inaccurate motion
estimation (ME) at the coarsest resolution, due to lack to
detail and aliasing effects. These inaccuracies result in
suboptimal ME at finer resolutions. Secondly, the small
block-size at a coarser resolution level does not provide
robust motion estimation. Finally, the amount of aliasing
increases with the number of decomposition levels. On
the other hand, the fine-to-coarse (FtC) motion
estimation techniques™ provide a superior estimation,
but at a higher complexity. In this technique, because
accurate motion estimation are formed at the finest
resolution and then scaled to coarser resolutions in the
encoded process, these motion estimates better track the
true motion and exhibit lower entropy than coarse-to-fine
estimations, providing higher quality, both visually and
quantitatively, but because fine-to-coarse MRME is
executed in the full search region at the finest resolution
subband, it is caused to increase much computational
complexity in relatively coarser energy level.
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This paper proposes a new method for reducing the
computational overhead of fine-to-coarse MRME at the
finest resolution level by searching for the region to
consider motion vectors of the coarsest resolution
subband. While FtC MRME searches for the full search
area in finest resolution level, we process closer
estimation in the region of scaling initial motion vectors
in the coarsest resolution level, and more sparser
estimation in the others. And so we determine the
potential motion area and estimate the motion vector at
finest resolution level. And then this determined motion
vector are scaled to coarser resolutions. Therefore, this
method is similar to computational complexity of the CtF
MRME technique and very significantly reduces that of
the FtC MRME technique.In addition, they provide
higher quality than CtF MRME, both visually and
quantitatively.

This paper is organized as follows. Section 2 provides
several brief MRME techniques; like CtF method, FtC
method. In Section 3,the proposed algorithm are detailed.
The simulation results are provided in Sec.4, which is
followed by conclusions in Sec.5.

II. CtF and FtC method

1. Coarse-to-Fine MRME method.

This approach exploits the multiresolution property of
the wavelet pyramid in order to reduce the computational
complexity of the motion estimation process. We note
that Zhang et al.!'! have consided several techniques for
motion estimation. Here, we choose the “S, , W, +refine”

techniques for motion estimation since it provided
superior motion estimation. Fig.1 is shown the typical
pyramid construction. In this MRME scheme, the motion
vectors at the coarsest level of the wavelet pyramid are
first estimated using the conventional block-matching-
based motion estimation algorithm. Then the motion
vectors at the next level of the wavelet pyramid are
predicted from the motion vectors of the preceding level,
which are refined at each step. At the same time, it codes
motion vector and compensated prediction image at each
step.
The process order is following.

Stepl.Construct Discrete Wavelet Transformed image
with N-level

Step2. Estimate the motion at coarsest level (S, , #,").
From the MVs, form a motion compensated

prediction image 5’8 , Wa” and prediction residual,



‘i(zSB_S’S)’ Ws”(=m—”f§)
Code the MVs

information.
Step3. Increase the level.

Using the MVs(at W,), the motion vectors at the

next level of the wavelet pyramid are predicted,
which are refined at each step
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and the prediction residual
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From this scaling and refining MVs, form a motion
compensated prediction image( W2°N_ , ), and

prediction residual( W;‘jv_ )

Code the MVs and the prediction residual
information.

Step4. If the proceeding is the finest level, go the next
mmage.

Where V(x,y) represents the motion vector of the

reference block centered at (x,y) for the O-orientatiom
subimage for jth levels of the pyramid. The incremental
motion vector A{(dx,dy) is calculated within a reduced

search area centered at 2 V;’ (x,y) and 4V’ (x,y) for level-

2 and level-1 pyramids, respectively. The subimages of
level-3, level-2.and level-1 pyramids are divided into
small blocks of size nx n, 2nx 2n, and 4nx 4n,respectively.
With this structure, the numbers of blocks in all the
subimages are identical. As a result, there is a one-to-one
correspondence between the blocks at various levels of
wavelet pyramid. The search windows for level-3, level-
2and level-1 subimages are p, p/2,and p/4, respectively.
In this method, motion estimation techniques
generally have a lower complexity at the expense of
inaccurate estimation. For the rest, M.K. Mandalm has
proposed the method that the motion vectors are dropped
adaptively depending on the motion compensation
performance, and Karlekar Jayashree, Desai UP! has
proposed the MSAD method to estimate the motion.
Although these are all good performance, these methods
have the weak point to discard the detail information.
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Fig. 1. The Structure of Wavelet Pyramid

2. Fine - to — Coarse MRME method

Conklin et al.l’) have proposed a MRME scheme based
on a fine-to-coarse approach. Here, comparing with CtF
method, the initial motion estimation is executed in the
pixel domain. In the other word, the motion vectors at the
finest level of the wavelet pyramid are first estimated
using the conventional block-matching-based motion
estimation algorithm. Then, scale and refine that at
coarser resolutions. Here, for the ordering transmission
of the level, FtC method is needed to code the
refinements of the MVs and compensated prediction
image after the total motion estimation process.
The process order is following.

Stepl.Construct Discrete Wavelet Transformed image

with N-level
Step2. Estimate the motion at finest level (#,’) and

as it decrease the level, scale and refine the MVs to

coarsest level.

Vi y) =V, (x,9)+2"7 + A(d, y)
for j=12,,.N
3

Step3. Increase the level.

Using the best set of MVs, form a motion

compensated prediction image( W), ), and

prediction residual( Wng-/ ),

Code the MVs and the prediction residual
information.

Step4. If the proceeding is the finest level, go the next
image.

In this technique, because accurate motion estimation
are formed at the finest resolution and then scaled to
coarser resolutions in the encoded process, these motion
estimates better track the true motion and exhibit lower
entropy than coarse-to-fine estimations, providing higher
quality, both visually and quantitatively, but because
fine-to-coarse MRME is executed in the full search
region at the finest resolution subband, it is caused to
increase much computational complexity in relatively
coarser energy level.
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Fig 2. The Procedures of (a) CtF method (b) FtC method



Il . Proposed Method

This paper’s propose is to reduce the computational
complexity of the FtC method, similar to that of the CtF
method.

Although motion estimation of coarsest level is
difficult to track the true motion, due to lack to detail and
aliasing effects, it can give the very important clue to
estimate motion at finest level.

In upper two method, they independently process
motion estimation at the coarsest level about other levels.

So, we choose to use these MVs of coarsest level for
reducing the searching area of estimating motion vectors
in the finest level subimages.

The technique proposed in this section exploits this
characteristic, but to reduce the computational
complexity of block-based motion estimation algorithm.
We assume that the motion vector at finest level is very
likely to exist in the potential area, where scaling the
motion vector at coarsest level.

We first estimate the motion vectors at coarsest level
in a frame, as indicated by the darkened blocks of Fig.3,
by using a block-matching technique including full
search algorithm.

Using the MVs, we then limit the searching area by a
factor of 2, comparing the original searching area(N x N)
and in order to increase the searching performance, we

shift the limited searching area (N/2 x N/2) to inner point.

As shown fig.4., then we choose the alternatively
subsampling point to estimate the motion in a limited
searching area, using block-matching algorithm, and
choose the vector for which the mean absolute
difference(MAD) is the smallest, Then, we again
estimate the motion around the chosen vector.

The Process order is following.

Stepl.Construct Discrete Wavelet Transformed image
with N-level
Step2. Estimate the motion at the coarsest level( S, ).

Step3. Using this method, Estimate adaptively the
motion at finest level (W,”) and  as it decrease
the level, scale and refine the MVs to coarsest level.

V(% y)=Vy(x,¥) % p(x, ) + A'(dx + &)

x=x%x2 if x=2
« where p(xy) x=xx4 else
y=yx2 if y=2
y=yx4 else @

o A'(dx + &) : alternatin g subsamplin g point.
Vix,y) =V, (x,)+2" + A&+ &)
for j=12,, N
&)
Step4. Increase the level.
Using the best set of MVs, form a motion

compensated prediction image( W;N-f ), and
prediction residual( 7, , ),

Code the MVs and the prediction residual information.

Step5. If the proceeding is the finest level, go the next
image.
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Fig .3. First, motion Estimation starts from (a)the coarsest
level, and then this motion vector is scaled to (b)the
finest level, and then estimate the motion in the limited
searching area.

N/2

e0@O0®O0O0O0®

OO0 0O0 q) OO0 O : searhing point in th

ol XoX XoX YoX Ne lllmltedsearchln? area

@ : first searhing point

00000000,

@ -O-0-O -G 0-C @ ~ @ : the best point betweent
the first searhing points

0000 ©0®o0 @ : second searhing point

[ON NON ] [ N N N

[ONOCRONONONONON N0 @ : the last best point

00000000

Fig. 4. Searching pattern in the limited searching area

IV. Simulation and Results

To test the performance of this approach, simulation
were run on 720x 480 three sequences; 50 frames of
Football, Susie, and 40 frames of Table tennis. Football
and table tennis sequences offer an interesting
combination of still, slow- and fast-moving objects,
camera zoom and panning, and objects with relatively
difficult sizes. On the other hand, Susie sequences offer
slow motion and low spatial detail.

We have used the Daubechies-8 Tab wavelet, which
provides good coding performance. The peak signal-to-
ratio(PSNR), which defined as

2
PSNR = 1010gm(255 )

MSE (6)

(where MSE is the mean square error

between the signal/images)
has be employed as a measure of the quality of the
reconstructed images. For the relative comparison, we
have run the CtF method, FtC method, and proposed
method. In CtF method, the searching area is -2 ~ +2.
And, in FtC method, the searching area at finest level is —

8~+8 and that of other levels is —2~+2.
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That result is shown the table 1.As shown the table 1,
the computational complexity of the proposed method is
about 10% than that of FtC method, similar to that of
CtF method. And the increase of PSNR is 0.5~0.9dB.
Comparing the PSNRs increase of FtC method with that
of CtF method, the increase of the proposed method is
about 70%.

(b)

Fig. 5. the Motion Compensated 1 level- H subband
image of the 11th football frame :
(a) CtF method ,(b) FtC method ,(c) Proposed method

Table 1. PSNR and Computational complexity

PSNR Matching point/ block
(1 level)
CtF FiC Paper |} CtF | FtC Paper
24.62
Fb | 23.69 | 25.03 (68%)*
26.26 | 25 | 289 27
Tt | 25.56 | 26.63 (66%)* (9.8%)**
34.03
Ss | 33.55 | 34.34 (65%)*

()*: the ratio of PSNR of paper-CtF to FtC-CtF
()**: the ratio of matching point of paper to that of FtC

Fig.5 is shown the motion compensated 1 level-H
subband image of the football 11th frame. As shown the
Fig.5, we can see that our proposed method track the
motion at the fine level very well

V . Conclusion

In this paper, we proposed a new method for reducing
the computational overhead of fine-to-coarse MRME at
the finest resolution level by searching for the region to
consider motion vectors of the coarsest resolution subband.

As shown the result, our method of the computational
complexity is reduced about 10%, That value is similar to
computational complexity of the CtF MRME technique and
very significantly reduces that of the FtC MRME technique.

In addition, flicking in textured regions, such as the
textured background in Table Tennis or Football, is
significantly reduced using our method.

As a result, this method ME provides both higher
PSNRs and better visual quality.
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