Proceedings of ITC-CSCC 2000, Pusan, Korea

Co-evolutionary Design of Team Level Play
in Soccer Server

Masatoshi Hiramoto*, Hidenori Kawamura*, Masahito Yamamoto*,
Keiji Suzuki** and Azuma Ohuchi*,

* Graduate School of Engineering, Hokkaido University.
Nishi 8, Kita 13, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
Phone +81-11-716-2111(Ext.6498), Fax +81-11-706-7834
E-mail: {masatosi,kawamura,masahito,ohuchi}@complex.eng.hokudai.ac.jp

**Future University Hakodate
116-2, KanakanoNakano, Hakodate, 041-8655, Hokkaido
Phone+81-138-34-6444, E-mail: suzukj@fun.ac.jp

Abstract Recently, RoboCup soccer simulation has
been regarded as a good benchmark problem for
multiagent researches. Soccer agents have to make
decision based on visual and auditory information, which
are sent from the soccer server. In order to develop a
strong team, we have to design decision-making process
of each player agent. However, it is very difficult for us
to design the decision-making processes in detail,
because we don’t know what actions of each player are
effective for the team.

In this paper, we attempt to apply co-evolutionary
method, which is one type of analogies of evolution, to
improve the team play. Agents have hand coded basic
skills, which include dribble, shoot, pass etc. Agents
already can play autonomously and independently.
Individual agent skills are characterized by some
parameters. By coevolving teams with these parameters,
we obtained relatively interesting teams, in which
players behave cooperatively in order to win the soccer
game. From some experiments, we discuss what teams
are evolved.

1.Introduction

In the related works to soccer server of RoboCup, many
kinds of artificial intelligence and multi-agent
technologies are researched in various fields. In the
simulation part of soccer server, there are many strong
teams developed by detailed designs of hand-coded
program based on top-down approaches, but it is exciting
if it can be possible to design strong soccer team by the
computer program itself. It is very difficult but
interesting and challenging to let a computer program to
design the intelligent program by itself. The aim of us is
to design the strong soccer agent team based on
evolutionary technology in the field of artificial
intelligence and to overcome champion team by
autonomously self-designed agent. As a first step of such
aim, we construct co-evolutionary soccer agent team
using hand-coded primitive actions. The outline of our
approach is described as follows.

Our soccer agent makes a series of actions based on two
important factors, that is, basic skills and meta-level
decision-making. As known, available actions of soccer

agent is very simple, e.g., turn, dash, kick and say.
Therefore, we prepare several extended primitive actions,
i.e., run, dribble, pass and shoot. These actions are
appropriately constructed by combinations of turn, dash
kick and say, and applied in the basic skill level with
some parameters. In addition, each action is preliminary
designed by hand coding. Meta-level decision-making is
related with a coordinated strategy among agents, and
executes a sequence of primitive actions. Here,
generating of meta-level plays is controlled by some
meta-level parameters and primitive parameters, e.g.,
formation parameter, offense-defense parameter, strategy
parameter, and so forth. That means behavior of agents is
developed by co-evolution. Meta-level parameters and
primitive parameters strongly affect the strength of team.

Therefore, we try to let our agent team to evolve
autonomously by adjusting meta-level parameters based
on co-evolutionary technology often used in genetic
algorithm techniques in the computer science area.

2.Agent Description
2.1Primitive Functions

The players have several predefined primitive functions
as the basic strategies that are run, dribble, pass, shoot
and so forth. The reason why predefined primitive
actions were introduced is that it takes a lot of
computational costs to let the players acquire these
primitive abilities by using conventional learning
systems although it is reported that the primitive
functions acquired by using a learning system are more
adaptive and flexible to the environments of MAS. We
designed these primitive actions with some parameters
that adjust the extent of the action. These actions are the
followings.

MOVE: This function represents a movement from the
current position to the destination. The input of this
function is the only destination. The speed of this run
action can be adjusted by changing dash power
according to various situations, for example, when a
ball is not controlled by anyone, namely when the
player need to go to the ball earlier than any
opponents in order to keep the ball, the player run

— 727 -

with maximum dash power or when the player return
to a home position, the player run with normal dash
power to save their stamina.

GO_HOME: This function is an extension of MOVE
function. This function enables the player to slightly
go to own home position by using back-dash, if it is
efficient. When a player is already in their home
position, the player does nothing and only turns to
the ball.

CHASE_BALL: This function is also an extension of
MOVE function. When a player pursues the ball, this
function predicts the ball position in future several
steps.

DRIBBLE: This function is one of the most important
functions in order to keep a ball and to get a score.
To perform the Dribble function,.the speed and the
destination of a player have to be determined. Speed
represents that it takes for the player to move from a
current position to the destination with a ball, and is
determined according to the stamina of the player
and the possibility to get a score. In the case of high
speed, the ball is far from the player because the
player kicks the ball more strongly and the risk of
keeping the ball increases.

PASS: Generally, pass is realized by cooperation
between two players. However, this primitive pass
function is not defined as such advanced technical
skill. Namely, the pass function defines only that the
player kicks a ball in a certain direction. The
arguments of the function are a relative direction to
the destination and a kick power. Actual pass is
realized by combination of the pass function and run
of the other player.

SHOOT: This function is similar to pass action. The
player kicks a ball to the goal in order to get a score
by using the shoot function. The argument of the
function is only a position in the goal. The player
kicks a ball in the direction of the position with the
maximum kick power.

2.2 Decision-making Process and Parameters

As we mentioned earlier, an agent (player) decides an
appropriate action from the sensed current environment.
In order to construct more complex and flexible actions,
we adopted meta-level decision-making process. Meta-
level decision-making process has a tree structure based
on if-then rules using primitive functions. Such an agent
architecture is simply shown in Fig.1.

() :primitive function

() :turning point

if (ball x < parameterN) Chase_Ball();

i
Erlse Go_home();

Fig.1 Agent architecture

Some of if-then rules have parameters that strongly
influence to agent behavior and the style of plays. In the

decision-making process, we defined 10 parameters.
Decision-making process and parameters are as follows.

Notation:
<ParameterName>[min vale, max value]: <Explanation>

At the first step in the simulation,

1. Say Prob [0, 1]: probability to execute the say
function. Player can tell other teammate about
information that he have by using the say function.

2. Ball Reliable [0, 1]: a player decides whether search
ball or not according to the value.

If a ball is in kickable area for a player,

3. Shoot Range [0, 50]: distance from the position of
the player to the opponent goal. If the player is in
nearer than this parameter value, then the player
shoots the ball to opponent goal.

4. Pass Line [-54, 54]: represents x-axis in the soccer
field. If x-axis of teammate’s position is over this
parameter value, the teammate is taken into account
as a candidate of pass receivers. This parameter can
be varied in the range from their own goal line to the
opponent goal line.

5. Pass Dist [0, 50]: distance from the position of the
player to other teammates. If teammate’s distance
from the player is over this parameter value, then the
teammate is taken into account as a candidate of
pass receivers.

Else if the player chase the ball,

6. Chase in Home [0, 50]: distance from player’s home
position to the ball. If the ball is in nearer than this
parameter value, then the player chases the ball.

7. Chase Dist Home [0, 50]: distance from the player to
his own home position. If the distance is over this
parameter value, then the player doesn’t chase the
ball.

Else if the player does not chase the ball,

8. Go Home Range [0, 50]: distance from the player to
his own home position. If the distance is over this
parameter value, then the player goes back to home.

9. Stay Home Range [0, 50]: distance from the player
to his own home position. If the distance is less than
this parameter value, then the player stays here. That
is, player does nothing.

10. Home Position [0,9]: this parameter is different from
other parameters. This parameter defines player’s
home positions. We prepared 10 kinds of home
position. This parameter represents one of them.
Each player has unique own parameter regarding to
home position.

All parameters with exception of Home Position have
real values. The value of Home Position is an integer.

3. Co-evolutionary Procedure

Some of if-then rules may have some parameters, which
strongly depend upon the style of plays. By representing

a set of these parameters as an individual (a team), we
performed our co-evolutionary procedure.

The framework of our proposed co-evolutionary
procedure is similar to Blair’s co-evolution model [Blair,
1999]. Our co-evolutionary procedure is summarized as
follows.
1. Challenger is picked up in order.
2. Champion versus Challenger.
3. If Challenger beats Champion, Champion is
replaced by the Challenger.
4. New Challenger is created by adding random noise
to Champion’s set of parameters.
5. New Challenger added to end of Challenger’s
queue.
This co-evolutionary procedure develops teams over and
over. We hope that finally there are high performance
teams.
We adopt co-evolutionary procedure based on only game
score, as same as [Luke, 1998], because we can avoid
defining fitness functions. It is not clear what actions or
statistical factors, or which agents contribute to the
victory. It has difficulties that we define effective fitness
functions. So we assume that co-evolutionary procedure

evaluated by only score is relatively clear and reasonable.

It is natural to hope that latest generations are superior to
early generations. But in general co-evolutionary method
should not be expected to show continuous progressive
adaptation, because of individual generated by only
focusing on generations just before. The method does not
consider generations that passed long time to generate
new generations. This is also applied to our co-
evolutionary procedure. But our experimental results
show good performance of latest generations,
Experiment setting is described in the following section.

4. Experiment

As similar to the general genetic algorithm, we have a
population, actually consists of 10 individuals in our
experiments, An individual represents one team. An
individual consists of 4 sets of parameters. Each set of
parameters has same size. Several players refer to a same
set of parameters. 4 sets of parameters respectively
represent goaltender, defender, midfielder and offender.
One set of parameters is assigned to uniform number 1
as goaltender. Three other roles (sets of parameters) are
assigned to players according to x-axis of each player’s
initial home position. Except Home Position parameter,
all parameters that agents use are included by a set of
parameters. Each agent has own unique Home Position
parameter. These settings are to reduce computational
cost, and enable to converge relatively early.

Beginning with a random initial population. Here we use
only mutation as genetic operators. Only one match is
held between champion and challenger. If the match
results in a draw, challenger is disappeared and new
challenger is created from the current champion. This
procedure is executed over and over. The match is
carried out in 4000 simulation steps. It takes almost 7
minutes. And the off side rule is off.

The experiments set is as shown in Table. 1.

Table.1 experiment setting

Mutation | Noise | Population | Number
rate range size of trials
Experiment | 7.6% | -10% 10 622
~+10%

Random noise added to champion. 10% noise means that
10% of max value of parameter is added to current value
of parameter. If a parameter added random noise is over
its max value, the parameter is set to its max value. If a
parameter added random noise is less than its min value,
the parameter set to its min value. At first experiment, we
evaluate team’s progressive evolution.

200 Champions appear in result. We evaluate latest
champion by latest champion face ancestral champions
every 5 generations. The result is shown as Fig.2

3
1
@, i ‘. 41..]
I . i |
g \ lnrlllf o { P v AT Q‘l"
‘\1“"! RV . AP s,';- ll A ﬂ
g i]
APy) Ay Vg ,\\V‘ (R3] A p I3
2 vyl \ A il SN (SO A N I i i
L LA S s LA S \ IR
4 1
i (VAN ViSO
v ' \V v v \ /
1 v ’
b O SOV AU RSO sl
Vi .
! H Latest champion ——
A Ancestral champions ~—
o P
H the difference of score ——-
-2 .
o 50 100 150 200

match number
Fig.2 scores between Latest Champion and Ancestral
Champions

The lines drawn in Fig.3 are score, one of lines latest
champion get score from ancestral champions. Other line
ancestral champions get score from latest champion.
Another line is the score subtracted the score of ancestral
champion from latest champion. The score is calculated
means of scores summed 5 matches that latest champion
faces same ancestral champion. Latest champion faces
one of ancestral champions in turn that ancestral
champions appeared. The Smaller match number become,
the earlier ancestral champion faces latest champion. If
match number is 1, latest champion faces first champion.
In almost all matches, latest champion get scores more
than ancestral champions get score. This instructs that
latest champion is superior to ancestral champions, and
co-evolutionary procedure performs successfully.

Through all matches, ancestral champions get score
constantly. We consider that ability of offence regarding
ancestral champions doesn’t change and the ability of
defense regarding ancestral champions is valid through
generations.

Now we investigate parameters regarding kick of each
champion; parameter number is 3, 4 and 5. The details of
these parameters are illustrated in Fig.3. B and C
represent particular situations with regard to three
parameters. When these parameters change, the strategy
of player’s action is varied. Player does not pass to
teammate in black areas of field in Fig.3. The values of

- 729 —

Pass line or Pass dist become higher, player become not
to pass other teammates. For example, at B in Fig.3

Player does not pass other teammate almost all situations.

At C in Fig.3 player in opponent side always shoots to
opponent gent—-et

Pass dist

Shoot range

B. !

Fig 3 Hlustrations of parameters regarding kick:
Pass dist, Pass line and shoot range

Fig.4 shows three parameters about 200 champions. The
vertical axis is value whose ranges [min, max] are
changed to [0,1]. A, B and C represent respectively
defender, midfielder and offender. Defender gets
following strategy. Defender almost does not pass. When
defender has ball, defender dribbles to opponent area,
and if in Shoot range, then defender shoots. Offender
gets same strategy as defender. Offender shoots to
goalmouth in long distance to opponent goal.
Midfielder’s strategy is different. At first stage of
champion’s midfielder almost does not pass. As
generations go, the value of Pass dist becomes lower.
That is, midfielder becomes to pass.

The strategy obtained finally as whole team is following
thing. When defender possesses ball, defender dribbles
to opponent area, and shoot in opponent area. Offender is
near opponent goal. Offender picks up the ball shoot by
defender and shoot to goalmouth. When Midfielder
possesses ball, if there is no teammate near midfielder,
midfielder dribbles, otherwise pass the ball to near
teammate. And offender receives ball, then shoot to
goalmouth.

Though only score evaluate the match, team can develop
their strategy. The champion obtained finally defeats
almost all ancestral champions. We are surprised at this
result.

Conclusion

We construct co-evolutionary soccer agent team based
on hand-coded primitive actions. Only score evaluate the
match. The agent becomes to get own strategy as
generations go. We showed that our co-evolutionary
procedure performed successfully.

Shoot Range ——
Pass Ling .~
Pass Dist~--

s 100 150 200
A. defender parameters regarding kick
". : " Shoot Range ——
Wi n Pass Ling —— |
Pass Dist---

Shoot Range —
Pass Ling ~we—
Pass Dist- - -

) w0 00 P 200
C. offender parameters regarding kick

Fig.4 parameters regarding kick of defender, midfielder

and offender.

References

[Luke, 19998] Luke. S, C. Hohn, J. Farris, G. Jackson,
and j. Hendler, Co-evolving Soccer Softbot Team
Coordination with Genetic Programming. In RoboCup-
97: Robot Soccer World Cup I (Lecture Notes in
Artificial Intelligence No. 1395), H. Kitano, ed. Berlin:
Springer-Verlag. 398-411 (1998).

[Blair, 1999] A.D. Blair, E. Sklar & P. Funes. Co-
evolution, determinism and robustness, X. Yao et al.
(Eds.): Proceedings of the Second Asia-Pacific
Conference on Simulated Evolution And Learning
(SEAL'98) LNCS 1585, 389-396 (1999).

[Pollack 1998} J. B. Pollack and A. D. Blair, "Co-
Evolution in the Successful Learning of Backgammon
Strategy". Machine Learning 32, pp. 10-16 (1998).

— 730 —

