Proceedings of ITC~-CSCC 2000, Pusan, Korea

A High-Speed Multiplier-Free Realization of IIR Filter Using ROM’s

Thanyapat Sakunkonchak and Sawasd Tantaratana
Department of Electrical Engineering, Sirindhorn International Institute of Technology
Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
E-mail: thong@siit.tu.ac.th, sawasd@siit.tu.ac.th

Abstract: In this paper, we propose a high-speed
multiplier-free realization using ROM’s to store the re-
sults of coefficient scalings in combination with higher
signal rate and pipelined operations. We show that
hardware multipliers are not needed. By varying some
parameters, the proposed structure provides various
combinations of hardware and clock speed (or through-
put). An example is given comparing the proposed real-
ization with the distributed arithmetic (DA) realization.
Results show that with proper choices of the parame-
ters the proposed structure achieves a faster processing
speed with less hardware, as compared to the DA real-
ization.

1. Introduction

Realization of digital filters has been investigated in a
variety of ways during the past two decades. Some real-
izations attempt to use more efficient multipliers, while
others avoid hardware multipliers.

Distributed arithmetic (DA) is an efficient way to
compute a dot product using partial products, each of
which can be obtained by table look-up. The first de-
scription of DA was presented by Peled and Liu [1],[2].
White [3] presented a review on DA and pointed out
ways to reduce the hardware (hence, chip area) and/or
increase the processing speed.

Although DA provides partial products efficiently;
when the filter order becomes large, the VLSI silicon
area and processing speed of DA become less attrac-
tive. The size of ROM increases exponentially as the
filter order increases. The speed of a DA realization
is limited by the time response of ROM and accumula-
tion of partial products. However, an attempt to reduce
the ROM size results in reduced speed. Speed can be
increased at the expense of more memory [3]. In [4],
we proposed a realization using table look-up in combi-
nation with higher signal rate and pipelined operation
to obtain a multiplier-free realization. The idea was
to break the input signal into subsignals, use ROM’s
to store the results of scaling by the filter coefficients,
and then shift-and-accumulate to obtain the final out-
put. Processing of the subsignals is done at an elevated
clock speed. However, the simpler computation (shift
and add) relieves the constraint of higher clock speed.
In addition, operation at higher clock speed allows reuse
of the same hardware, yielding hardware saving.

This work was supported by the National Electronic and Com-
puter Technology Center (NECTEC), the National Science and
Technology Development Agency (NSTDA), Thailand, through
grant #07/2542

This paper extends the result in [4] by re-arranging
the structure to improve the speed with a small increase
in hardware. The DA realization and the proposed
multiplier-free realization using ROM’s are presented
in Section 2 and 3, respectively. Pipelining the adder
in order to increase the processing speed of the system
is described in Section 4. Section 5 compares the area
and speed of the proposed structure with those of DA
realization. Finally, a conclusion is given in Section 6.

2. Distributed Arithmetic Realization

Consider an N** order IIR filter with the output y(n)
given by

N N
y(n) =Y aix(n —i)+ »_ biy(n —i) 1)
i=1

=0

where z(n) is the input of the filter. Suppose the sig-
nals z(n) and y(n) have wordlength of J bits in two’s
complement representation, i.e. x(n) = —z(@)(n) +
23.1:_11 £(;(n)277, where z(g)(n) is the sign bit, and a
similar form for y(n). Then, (1) can be written as {3]

J-1
y(n) =) AX(j27 - AX(, (2)
Jj=1

where A = [ao a...an b1 ...bN] and XG) = [a:(,-)(n)
x(j)(n—-l)...z(j)(n—N) y(j)(n—l)...y(j)(n—N)].

x(n)

T ___{OforAdd(j: 1, 1)

-§ +~ 4 for Subtract (j=0)
5]
. 3
¥ SWA n
N | & VA
1 a]
“6
Yl
éj. =
2
D] | AP ¢
Ypn-D)

Fig. 1. A DA realization for an N*? order IIR filter.

We can see from (2) that the output y(n) is ob-
tained by adding partial results for j =1to J ~1 and
subtracting the partial results for j = 0. Since the coef-
ficient A is fixed, and z(;)(n) takes value of 0 or 1, the

~ 711~

value of AX'(IJ:) can be pre-computed for all 22N+ possi-
ble values of vector X ;) and stored in a ROM of 22V+1
words each of I bits. A block diagram of the compu-
tation is depicted in Figure 1. The signal T, dictated
whether the partial result is added (for j = 1,...,J-1)
or subtracted (for j = 0) from the accumulated result.
By some re-arrangement, the ROM size may be reduced
by a factor of 2 to 22V. Note that the ROM size grows
exponentially as N increases.

The speed of DA may be increased in two ways:
one at the expense of linearly increased memory plus
more arithmetic operations, the other at the expense of
exponentially increased memory, see [3] for detail.

3. The Proposed Multiplier-Free
Realization

In this section, we describe the proposed realization
which uses ROM’s in combination with elevated signal
rate to obtain multiplier-free pipelined operation.

We assume that the input signal z(n) has a
wordlength of J bits. Consider a partitioning of z(n)
into K segments (subwords) of L bits each, with J =
KL, as shown in Figure 2(a). Note that zo(n), z1(n),

.., Tx—1(n) are the subwords. Define u(m) as the sig-
nal obtained from time-multiplexing the K subwords,
as shown in Figure 2(b). Hence, u(m) is a signal of
wordlength L bits and a signal rate which is K times
the signal rate of z(n). Note that we will use n and
m for the time index of signals at the rate of z(n) and
u(m), respectively. Furthermore, in a block diagram,
signals with the same rate as z(n) will be represented
by thick lines, and signals with the higher rate by thin

lines. As seen from Figure 2, we can write z(n) and
Lbits Lhbits
< —> < >

HENEEEEEN

ace

X(n)—||||£l|

u(Kn) = xo(n) u(Kn+1) x(n)

—
w(Kn+(K-1)) = x,._,(n)
(a) Partition of J-bit signal into L-bit K segments, J = KL

“”I‘t[

?
0 1 2 3 4
. A S S S

Hmm Ihnl |

0 K
(b) The s1gnal u(m) which is obtained from x(n)

Fig. 2. Partition of z(n) to yield u(m)

az(n) as
K-1 K-
z(n) = Z zr(n)27 % = Z (Kn+ k)27F
Kt =
az(n) = Z au(Kn + k)27 % (3)
k=0

The partial result au(Kn + k), k=0,...,K-1, can be ob-

tained by table look-up of a ROM which has a content
of 2F words. The partial results are then scaled by 2-F£
and accumulated. As we shall see, the scalings and ac-
cumulations for all the filter coefficients are performed
by only one scale and accumulate unit, providing hard-
ware reduction.

Before we can obtain the proposed pipelined struc-
ture, we have to transform (1) so that y(n) does not
depend on y(n — 1) because the latency of the resulting
realization prevents y(n — 1) to be available in time. To
this end, we write from (1)

. N+1 N+1
y(n—1) = Za, 1z(n —z)+sz 1w(n—14) (4)

Substituting th1s in (1) yields

y(n) = aox(n) + axbiz(n — (N + 1)) + bibny(n — (N 4 1))
N N

+) (@i +ai—1bi)z(n — i) + > _(b; + bibi_1)y(n — i)
i=1 =2

RRES N41
= Z ciz(n —i) + Z diy(n — i)
=2

(8)
where ¢y = ag, ¢; = a;+bia;_1,i=1,...,N,and ey41
= anb;; and similarly for d;.

Based on the above idea in (3), we can realize the
IIR filter (5) as depicted in Figure 3. Each ROM con-
tains 2 word storing the results of c;u(-) or d;v(-), and
accessed by u(-) or v(-). Note that the scalings by 2~*L
for all the coefficients are performed by a single unit
inside the dotted box in Figure 3, providing hardware
saving. The scaled and accumulated result is delayed
and downsampled by a factor of K to obtain y'(n) at
the original signal rate.

=\ J J=KLbits
& & . [P x(n)
N o) N
OGP, S
—@‘ < D u(m)
L qL 7 AL 1L
Y 4
ROM ROM ROM ROM ROM SSD unit
2L words 2% words 2¢ words 2% words 2% words —<m> L
forc,, u for e for . u for c,u for cu

1 4 P i b7 l
Y 4 Y A(m)
AT GBI
3 A 3 B(m)

A(m) A1 L1 di =

ROM ROM ROM Yz
2t words i

ford,, v ford,v ford,v am)
D
K

at m=0,K,2K,:7"

¥(n)
Realization of SSD unit

Fig. 3. The proposed realization of N** order IIR filter

To derive the input/output relation of Figure 3, we
note that

u(m) = Tim>k ([%J) , v(m) = y,<"‘>" ([%J)
: (6)

— 712 —

where |7y| denotes the integer part of v, and < m >k
is m mod K. The signal before scaling is

N+1

}: ciu(m — (i + 1)K)

g @
(t - 1K)

+Zdv

Inside the dotted box, we have

A(m) =

K-1
B(m) = Am)2~<™>xL, C(m)= 3" B(m - k)
k=0
D(m)=C(m—-1), ¥'(n)=D(nK) (8)
Hence, the output is
K—-1N+1
Z Z c,'u. n —i- 1 K—-1- k)2‘<"K—1—k>KL
=0 i=0
K-~-1N+1
+ 3 Y div((n—i+ 1)K —1— k)27 <nKoImk>R L ()
k=0 i=2

Substituting the value of u(m) and v(m) into (9),
after a few steps of manipulation we have

N4l K-1

Zc, Z z(n —2—19)27

1=0 1=0
N+1 K-

+) di Z yi(n —i)27'F (10)
=2

N+1 N+1

= Z cgz(n—2-19)+ Z diy' (n ~ 1)

=0 =2

Comparing this with (5), we see that y'(n) =
y(n — 2). Hence, Figure 3 realizes the IIR filter in (1)
with the output delayed by two units. Note that 2N +- 2
ROM’s of 2L words are needed for storing the partial
results. Note also that accumulation of partial results
of all coeflicients is performed by only one summer of
H(z) = K51 2=, resulting in hardware saving. The
Scale-Sum-Downsample (SSD) unit in Figure 3 which
consists of a scaling by 2-<m>xL a summer, a delay,
and a downsampler can be realized by a simple struc-
ture, as shown in Figure 3.

The ROM size can be adjusted by changing the
value of L, with J = KL. When L ig large, the ROM
size is larger, increasing the ROM accessing time and
hardware. As L decreases, ROM size is smaller, but K
will be larger, which implies that more values need to
be accumulated in the SAD unit, reducing processing
speed. Therefore, as K and L change we have various
combinations of speed and hardware.

Although the proposed structure has many delay
units, they are only L-bit wide. Comparing to the J-
bit delay unit of conventional DA structure, K delays
of L-bit wide require similar silicon area as one delay in
Figure 1. The advantage of the proposed structure over

DA in Figure 1 is that it requires less silicon area when
L is not too large. In addition, the processing speed is
higher than that of DA realization, since Figure 3 needs
to accumulate K values to produce one output sample,
while Figure 1 accumulates J values to produce each
output sample (J = KL).

4. Pipelined Adder

Let us focus on the adders in Figure 3. We can see
that the speed of the filter is limited by the speed of
the adders. To eliminate this problem, we consider a
realization of such an adder followed by (K — 1) delay
units, as shown in Figure 4(a). The adder has to accu-
mulate all I-bit input signals, then pass the summing
result through (K —1) delays. We can gain advantage in
speed with the same amount of hardware by distribut-
ing the (K — 1) delays into the adder as in Figure 4(b).
Here, A;, B;, and Cj, j = 0 to K — 2, are the K — 1
subwords of the input signals A, B, and C, with each
subword being [I/(K — 1)]-bit long, where [7] denotes
the smallest integer > . Hence, a pipelined operation
is obtained. Since the adder is pipelined into a smaller-
sized adders, the propagation delay of the adder is re-
duced, resulting in higher processing speed. The gain in
a higher processing speed accrues with a small increase
in hardware.

o

b =T =P =HDl=%
D]

(b) Distribution of (K-1) delays to obtain pipelined adder.

Curry
out

Fig. 4. Structure for pipelined adder

The attempt to reduce the critical path delay by
distributing (K — 1) delays into the adder consequently
shifts the bottleneck problem to the SSD unit. To solve
this problem, the carry-lookahead adder (CLA) is used
to realize the adder in the SSD unit. As long as the
CLA inside SSD unit does not have the propagation
delay higher than that of Troam + Tpipetined adders the
SSD unit will not slow down the system. Morinaka et
al. [5], for example, presented a type of 64-bit CLA

— 713 —

Table 1. AREA AND SPEED COMPARISON BETWEEN DA AND THE PROPOSED REALIZATION FOR THE 5:* ORDER ITR FILTER

Area Speed

DA ArRoMm 22N = 210.word ROM | Trom 14 ns

Wordlength = 32 bits 10,000 gates | T _input adder (32 bits) 24 ns

A2_input adder 250 gates | Critical path delay 38 ns

delay 2,250 gates | Clock cycles required/output 32

TOTAL size 12,500 gates | Output signal rate 822 ksamples/s

DA Arom 2 x 22N .word ROM | Trom 14 ns

Wordlength = 16 bits 20,000 gates T3—input adder (32 bits) 40 ns

(2 ROM’s + larger adder) | As_input adder 500 gates | Critical path delay 54 ns

Adelay 2,250 gates | Clock cycles required/output 16

TOTAL size 22,750 gates | Output signal rate 1.2 Msamples/s

Proposed realization ALogic gates [2N 4+ 2] x 100 | Trogic gates 1ns

With K=16,L =2 1,200 gates | T3_input adder(3 bits) 3.75 ns
A3—input adder 3,250 gates

Adelay 3,650 gates | Critical path delay 4.75 ns

ASSD unit 3,000 gates | Clock cycles required/output 16

TOTAL size 11,100 gates | Output signal rate 13.2 Msamples/s

Proposed realization AroMm [2N+2] x 300 | Trom 7 ns

With K=8,L =4 3,600 gates | T3_jnpye adder(5 bits) 6.25 ns
A3—|'nput adder 3,250 gates

Agelay 3,500 gates | Critical path delay 13.25 ns

SSD unit 3,000 gates | Clock cycles required/output 8

TOTAL size 13,350 gates | Output signal rate 9.4 Msamples/s

Proposed realization AroM [2N +2]x 2,500 | Trowm 9 ns

WithK=4,L=8 30,000 gates | Ts_input adder(11 bits) 13.75 ns
A3—input adder 3,250 gates

Agdelay 3,200 gates | Critical path delay 22.75 ns

SSD unit 3,000 gates | Clock cycles required/output 4

TOTAL size 32,450 gates | Output signal rate 11 Msamples/s

Proposed realization AroMm [2N + 2] x 560,000 | Trom 26 ns

With K=2,L =16 6,720,000 gates T3_input adder (32 bits) 40 ns
A3—input adder 3,250 gates

Agetay 2,500 gates | Critical path delay 66 ns

SSD unit 3,000 gates | Clock cycles required/output 2

TOTAL size 6,728,750 gates | Output signal rate 7.6 Msamples/s

having only 2.6 ns delay time.

5. Comparison

As an example of comparing the DA realization with
the proposed structure, we consider a 5t order IIR fil-
ter with wordlength J = 32 bits. The area and speed
of both realizations are shown in Table 1. We assume
that carry-ripple adders are used in both realizations,
and that the response time of a 1-bit 2-input and a 1-bit
3-input carry-ripple adders are 0.75 ns and 1.25 ns, re-
spectively. With the CLA in [5], the critical path delay
of the proposed realization is not in the SSD unit. Note
that, for the case L = 2, ROM’s are replaced with logic
gates. In the table, we use the following notations:

4, =

T, =

We can see that all four cases of the proposed real-
ization are faster than the DA realization. However, as
L increases, more hardware is required. The amount of
hardware is more than that of the DA realization when
L is too large.

The advantage of the proposed structure over the
DA realization becomes greater as the filter order be-
comes large. An increased in filter order results in an
exponential increase of the ROM size in Figure 1 and a
linear increase in the number of ROM’s in Figure 3. The
processing speed of the DA realization is reduced by a

Chip area for Component “p”
Response time for Component “p”

larger ROM size, as the access time increases. However,
the filter order does not affect the processing speed of
the filter order since the ROM size remains unchanged.

6. Conclusion

We have presented a pipelined multiplier-free realiza-
tion of IIR filters using ROM’s and elevated signal rate.
By proper selections of the parameters (K and L),
the proposed realization gains advantage in both chip
area and speed as compared to those of DA realization.
When the filter order is larger, the advantage becomes
greater.

References

(1] A. Peled and B. Liu, “A New Approach to the Realization of
Nonrecursive Digital Filters,” IEEE Trans. on Audio and
Electroacoustics, vol.21, pp.477-485, Dec.1973.

[2] A. Peled and B. Liu, “A New Hardware Realization of
Digital Filters,” IEEE Trans. on Acoustics, Speech, and
Signal Proc., vol.22, pp.456-462, Dec. 1974.

[3] S.A. White, “Applications of Distributed Arithmetic to
Digital Signal Processing: A Tutorial Review,” IEEE ASSP
Magazine, vol. 6, pp.4-19, July 1989.

[4) T. Sakunkonchak and S. Tantaratana, “A Pipelined
Multiplier-Free Realization of ITR Filter Using ROM’s and
Periodically Time-Varying Structure,” In Proc. IEEE
ISPACS’99, pp. 597-600, December 1999.

[5] H. Morinaka, H. Makino, Y. Nakase, H. Suzuki and K.
Mashiko, “A 64bit Carry Look-ahead CMOS Adder using
Modified Carry Select,” In Proc. IEEE 1995 Custom
Integrated Circuits Conference, pp. 585-588, 1995.

— 714 -

