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Abstract: The technique of reinforcement learning
algorithm is extended to solve the multiobjective control
problem for uncertain dynamic systems. A multiobjective
adaptive critic structure is proposed in order to realize a
max-min method in the reinforcement learning process.
Also, the proposed reinforcement learning technique is
applied to a multiobjective satisfactory fuzzy logic
controller design in which fuzzy logic subcontrollers are
assumed to be derived from human experts. Some
simulation results are given in order to show
effectiveness of the proposed method.

1. Introduction

In daily life, we often confront with various forms of
decision making situations under which more than one
goal must be fulfilled. It is considered a challenging
issue to investigate decision making problems with
multiple objectives for efficient, satisfactory solutions.
Similarly, in many practical control problems, for
example, a overhead crane, an automatic control system
of a train, and a refuse incinerator plant, a number of
objectives need to be simultaneously achieved, which
may conflict or compete with each other [1,2,3,4,5]. And,
this kind of control problem is called a multiobjective
control problem. For these multiobjective control
problems, any control strategy based on a single-
objective optimization technique can hardly provide a
desired performance. In case of large scale systems
and/or ili-defined systems, the control problem with
multiple objectives is more difficult to handle due to the
uncertainty in the system models. Lately, various
intelligent system methods have been employed to deal
with multiobjective control problems for ill-defined
and/or uncertain plants. The fuzzy controller is a typical
example.

Yasunobu proposed a predictive fuzzy controller
that uses the rules based on skilled human operators’
experience and applied it to an automatic container crane
and an automatic train operation system [1,2] K. Kim
and J. Kim proposed a design method to assign the
certainty factors in a heuristic manner to the obtained
rules and apply them to calculate control inputs [6].
Ginsberg sorted out those rules which have smaller
number of antecedent conditions based on the traditional
Al approach [7]. Pedrycz considered a desigh scheme to
delete less confident rules via measure of inconsistency.
He defined index of inconsistency and level of
inconsistency, and eliminated the rules which have low
level of inconsistency [8]. Yu and Bien proposed a new
measure of inconsistency between rules, and proposed a

control method based on the definition [9]. Lim and Bien
also proposed a rule modification scheme via pre-
determined satisfaction degree function [5]. Recently,
Yang and Bien proposed a programming approach using
a fuzzy predictive model, and applied it to a MAGLEV
ATO control problem [4]. To solve the multiobjective
optimization problem, they assumed that a fuzzy
predictive model of the plant is available and applied the
max-min approach. But, because their method is
dependent on a model, it is hardly applicable for
uncertain systems. Also, it is found that, when the
prediction horizon is long, the result may require too
much computation for real-time control, and the
programming approach often makes it difficult to utilize
human heuristics and experience in the scheme.

Recently, it is known that the reinforcement
learning technique can solve this kind of difficult
situation {10,11,12]. Reinforcement learning is very
similar to the dynamic programming plus a direct
adaptive control technique [11]. It uses expected utility-
like information about environment to decide the action,
and update the information via interaction with the
environment without using any model. In this sense,
reinforcement learning can be a potential solution to the
control problem for which information about the plant is
not complete. Furthermore, different from the
programming optimization process, the method can
include heuristics and experience of human experts in its
scheme by modifying its policy.

2.Multiobjective Reinforcement Learning

In this section, we introduce some modified concepts for
the multiobjective reinforcement learning. As in the
conventional reinforcement learning scheme, a policy =
for the multiobjective optimization problem is defined as
a mapping from a set S of states to a set A of possible
actions. On the other hand, different from the ordinary
reinforcement learning, a reward r, is defined as a

t+1
mapping from the Cartesian product of a set of states and
a set of possible action to the M dimensional real-valued
vector space RM as in (1). A state-value function V(s)
of the multiobjective problem is also a vector since the
state-value function is usually the discounted sum of the
immediate rewards over time;
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where r, is a vector reward at time ¢ given that the agent
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follows the policy 7, s is a state, a is a action, M is
the number of objectives, and 0<y <1 is the discount
rate.

For the multiobjective reinforcement learning
problem under consideration, we define the concepts of
Pareto optimal vector state-value functions and
Pareto optimal policies as follows:

Definition 1. Domination [13,14]: A vector x € RM s
said to dominate a vector y e RM if every element of x
is larger than or equal to the corresponding element of y,
and there exists at least one element of x that is larger
than the corresponding element of y. Formally, we write
as follows:

x>,y (Vix; 2y, )and 3i,x; > y;),i=1,- M,
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Definition 2. Pareto optimal vector state-value

where x=[x1 Xy oo

function: A vector state-value function V7 is called
Pareto optimal if there is no other vector state-value

function that dominates V¥ among the possible vector

state-value functions. The set E,,,, of Pareto optimal

vector state-value functions is as follows:
E pareto =1V? € E1 | Thereisno V(s) e E¢
such that V(s) >, V7 (s), for Vs € §}

where = is the set of all possible state-value functions.
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Definition 3. Pareto optimal policy: A policy 77 is
called Pareto optimal if and only if the resulting vector
state value function is a Pareto optimal state-value
function.

Let [, denote Pareto optimal policies, that is;

[17 ={x? eIl| Thereisno V" (s) >, v ()
,for Vs € S,and for Vr e [1}
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where V7 is a vector state-value function when a
policy 7 is adopted, and [I is a set of possible
policies. It is remarked that the Pareto optimal set of the
vector state-value functions may contain more than one
element.

From the perspective of Pareto optimality, we may
say that the main issue of the multiobjective
reinforcement learning is how we get a Pareto optimal
policy and a Pareto optimal vector state-value function.
In this paper, we adopt the max-min approach for a
solution of the multiobjective reinforcement learning. In
case of the max-min multiobjective optimization, we get
a scalarized state-value function as follows:

V*(s)=max min V] (s),foreachs, (5)
mell k=L M

Using the function, we can get a Pareto optimal policy
just as in the max-min optimization. To realize the max-
min optimization process in reinforcement learning, we
propose a new reinforcement learning scheme called
multiobjective adaptive critic. The original adaptive

heuristic critic proposed by Barto uses only one adaptive
critic to estimate the state-value function of states [10].
In the multiobjective adaptive critic structure, multiple
adaptive critics are used for estimating the state-value
functions of the corresponding objectives. The structure
of the algorithm for two-critic case is depicted in Fig 1.
For each critic, its temporal difference &' is
calculated and used for its update of the parameters as
follows:
8 =rl+ W)y (s)=Vli (sc0),
Yol Wil ©)
Wi, W, +ax8,.
Here, i=1,---, M is the index for a critic, corresponding
to the index for an objective, and M is the number of
objectives. s, is the state after an action is taken, s, | is

the state before an action is taken, y is the discount rate,
r/ is a reward corresponding to the objective at time ¢,

and V',
Wi

is the estimated state-value function and the

output of the ith critic with parameters w,_,. w! is the

parameters of the jth adaptive critic at time ¢, and « isa
learning rate.

To the associative search element, one temporal
difference is selected among the temporal differences

&, of the critics and it is used to update the parameters
of the critics and the policy as follows:
k =arg min v,
i=l M

5/’ :(S'Ik =r,k+7ijl(51)_7fkl(sz—l)’ (7)
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where &/ is the temporal difference for the associative

search element at time ¢, w/ is the parameters of the
policy at time ¢, and £ is a learning rate.

We may call the proposed process as an implicit
max-min optimization, because the maximization process
is not directly adopted and is performed by the temporal
difference learning. To realize an adaptive structure with
variable parameters for the adaptive critic and associative
search element, we choose an adaptive fuzzy inference
system in this paper [12].
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Fig. 1. Structure of multiobjective reinforcement learning
(the case of two objectives).
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Problem

In real control practice, experts may be available about
the plant to be controlled. It would be better if we use
their expertise in controller design. But, because the
controller from the knowledge may not be Pareto
optimal, we apply the proposed multiobjective
reinforcement learning to the controller. We can also
make the reinforcement learning to converge fast using
the previously obtained knowledge. The overall
procedure to apply the proposed multiobjective
reinforcement learning approach to the multiobjective
control problem is as follows:

Step 1. Construct a fuzzy controller using knowledge
from human experts.

We can utilize the knowledge or heuristics of experts
about the plant to control in this step. The obtained
knowledge is easily converted into the rule base of fuzzy
controller using the fuzzy inference system.

Step 2. Derive the vector state-value function of the
current fuzzy controller via temporal difference learning.
In this step, the policy obtained in Step 1 is not modified,
while learning of the vector state-value function is
performed using the rewards defined for the objective.
Step 3. Determine the satisfaction degrees to compare
between the state-value of each objective.

Because the rewards are determined without taking the
other objectives into consideration, the state-values of
objectives should be normalized using satisfaction
degree values from human designer in order to be
compared.

Step 4. Derive a Pareto optimal fuzzy controller via the
proposed multiobjective reinforcement learning.

The proposed learning method is applied to the adaptive
fuzzy controller with the real plant. In the step, the
policy, that is, the adaptive fuzzy controller is changed
into a Pareto optimal policy for the real plant through the
proposed multiobjective reinforcement learning.

4. Design of Satisfactory Multiobjective
Fuzzy Logic Controller

It is reported in [5] that the fuzzy controller obtained
from human experts is easily optimized for one objective.
Therefore, for the multiobjective control problem, it may
result in multiple fuzzy subcontrollers each of which is
optimized for only one objective as proposed by Lim and
Bien [5]. We may consider a supervisory controller,
which coordinates the outputs of the subcontrollers. The
overall structure of the multiobjective fuzzy logic
controller is shown in Fig. 2. In this paper, the weighted
sum of the fuzzy logic subcontrollers for the final output
is used. The multiobjective adaptive critic architecture is
used for the fuzzy logic tuner of the supervisory fuzzy
logic controller. And, for the rewards to the controller,
the predefined satisfaction degrees of the objectives are
used [15]. The max-min multiobjecitve reinforcement
learning approach is adopted for the proposed
multiobjective adaptive critic structure, and the Pareto
optimal policy is found in terms of satisfaction degree.
The total controller is described to learn a satisfactory
solution.
[Problem Formulation]

Given satisfaction degree functions P, (V, ), k=1,---.M
for the multiple objectives V,,k=1,---,M , determine
the weights wy,k=1,---,M for each output of the fuzzy

logic subcontrollers so that the control result is
satisfactory.

Mx

Wity
k

v, ®
k=1

u final =

M=

u, = Fuzzy, (x),
where x is the state variable of the plant and Fuzzy, (x)

is the output of the fuzzy subcontroller.
The rules of the supervisory fuzzy logic controller
are in the form of MIMO fuzzy controller as follows:

R If x is Lgl) and x, is L&? and ... and x, is
[4 . £ . ¢
Lilz,then @, is LEU,)""""M is L(wL; )

where N is the number of states and M is the number of
objectives

4.1 Simulation

To show the effectiveness of the proposed method,
simulation is conducted for an overhead crane control
system [5]. For the system, two objectives are defined:
positioning and antiswing. These objectives are
conflicting with each other and thus some form of
compromise is need.

The dynamics of the plant is as follows [5]:

x(k +1) = x(k) + Tx(k),

. . f
x(k+1)—x(k)+TM,

. (10)
Ok +1)=0(k)+TO(k),
9(k+1):9(k)+T —gsin(@(k))+2‘cos(9(k))/M ’
where f is the input force, x is the trolley position, & is
the angle of the load, the mass M of the trolley is 1 (kg),
the gravity constant g is 9.8 (m/sec?), the length ¢ of the
rope is 1 (m), and the sampling time T is 0.01 (sec).
Initial value of the plant is given as x=1.0 (m), =
0.7 (rad). The rule base for the weight decision fuzzy
inference system is as follows:

Ifxis £,and @ is LY,

; ) ; 0.
then @ is Lw1 , @08 Loy (11)
Satisfaction degrees for the objectives are given by
P, (¢ elapsed )=
1 for te[apsed < tmin

t

elapsed ~Lin
Finax — Fimin

0 fort <t

max — ‘elapsed

1- for tmin < tc[apsed b3 Lmax » 1= 1’2,

(12)

And its parameters are 1., =10 (sec), t,. =20 (sec),
where 1., is the time period to arrive the goal state,
and the goal state is |x‘ <0.05(m), and |t9| £2.9° within
20 seconds. The satisfaction degrees are fed back as
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rewards after each control action. If the satisfaction
degrees of both control objectives exceed the certain
desired level, the proposed leaming mechanism stops.
When learning stops, the supervisory fuzzy logic
controller does not vary. But, if one of the satisfaction
degrees goes back below the desired level again, the
proposed learning mechanism will revive. In this
simulation, we set the desired satisfaction level at 0.8.

In the fuzzy subcontroller, 7x7=49 rules are used
for each. Fig. 3 and Fig. 4 show that the control results
by the proposed method are satisfactory after 4 failures.
We find that the learning stops after both of the
satisfaction degrees are above the desired level 0.8.
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5. Concluding Remarks

It is shown that a modified reinforcement learning
method can be effectively used for a multiobjective
optimization problem. For this, the Pareto optimal policy
for multiobjective reinforcement learning was defined
and a multiobjective adaptive critic method was
proposed to get the Pareto optimal policy. The proposed
method can produce a solution of Pareto optimal type for
implicit max-min optimization in case of large scale
systems and/or ill-defined systems. Furthermore, the
method can be used for obtaining an on-line

multiobjective controller because the calculation cost is
relatively low. The proposed algorithm was applied to the
multiobjective satisfactory fuzzy logic controller. Some
simulation results were given to show the effectiveness
of the proposed method. For the future research, some
theoretical analyses of the convergence property of the
proposed method and stability of the multiobjective
satisfactory fuzzy logic controller are needed.
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