Proceedings of ITC-CSCC 2000, Pusan, Korea

Transformation of UML Diagrams into Interval Temporal Logic and
Petri nets for Real-Time Systems Design

Ryuji Gushikent, Morikazu Nakamurat, Shinji Konot and Kenji Onaga}

tDepartment of Information Engineering,
University of the Ryukyus
1 Senbaru, Nishihara, Okinawa, 903-0213 Japan
Tel: +81-98-895-8715, Fax: +81-98-895-8727
E-mail: ryuji@ads.ie.u-ryukyu.ac.jp,
{morikazu kono}@ie.u-ryukyu.ac.jp

Abstract: We consider, in this paper, a UML-based de-
sign support system for real-time systems. However, the
UML does not include any notion for verification of tim-
ing constraints. We presents transformation algorithms,
as a function of the support system, of UML descrip-
tions into Petri nets and Interval Temporal Logic mod-
els, which are very powerful for the verification. This
paper shows also transformation example for simple el-
evator system.
1. Introduction

A real-time system is a system with timing constraints
and strict requirements of reliability and high performa-
bility. Therefore, the verification and evaluation are very
important at the designing stage of real-time systems.

The UML(Unified Modeling Language)(1} is the for-
mal standard modeling language in the OMG (Object
Management Group) and is becoming a standard de-
scription language for object oriented modeling. For
real-time systems’ designer, however, UML is insuffi-
cient in areas critical to the development of real-time
systems[3]. Therefore, developing verification or perfor-
mance analysis algorithm incorporating with the UML
is strongly required in software engineering.

On the other hand, Petri nets and temporal logic can
be regarded as description languages. Many algorithms
well based on them to verify logical validity and per-
formance have been developed since they are based on
mathematical formulation.

In this paper, we propose a technique to transform a
UML model into Petri nets and temporal logic (Interval
Temporal Logic), then the transformed model is directly
used for correctness verification and performance evalu-
ation.

2. Real-Time Systems and UML

Real-time systems have strict timing constraints. In
this paper, we consider a UML-based design support sys-
tem for real-time systems. The UML combines graphical
and textual notations to describe systems. The UML is
primarily a set of notations and does not prescribe spe-
cific development process. The UML contains several
different types of diagrams, which allow to express differ-
ent aspects and properties of the system to be developed.
The UML includes two forms of diagrams, sequence and

}Okinawa Research Center,
Telecommunications Advancement Organization
1 Asahimachi, Naha, Okinawa, 900-0029 Japan

E-mail: onaga@ie.u-ryukyu.ac.jp

collaboration diagrams, to represent message trajectory
among (active and passive) objects in the system. The
state and activity diagrams represent the state and be-
havior of the system. These four diagrams can represent
dynamic properties and can allow us to model real-time
systems.

Let us consider an elevator system as a simple example
of the real-time system. Figure. 1(a) shows a usecase
digram of the system. The system is composed of four
objects, “User”, “Controller”, “Box”, and “Door”. The
usecase diagram represents relation among objects.

The sequence diagram shown in Figure. 1(b) explains
the detailed message trajectory among objects: User
object sends “request” to Controller, Controller object
receives the “request”, Controller sends messege to Box
to move to the requested floor and also to Door to open
or close, and so on. Figure. 1(c) depicts the statechart of
the system. It represents the relation among the system
states.

Verification and performance evaluation of a real-time
system at the deigning stage is very important. The
purpose of the research is to introduce these functions
into a UML-based design support system for real-time
systems.

It is known that a considerable number of studies have
been made on verification and evaluation using Petri
nets or temporal logic. Thus, in this paper we propose a
transformation technique of UML models(sequence di-
agram, statechart diagram) into Petri nets and tempo-
ral logic. The detail algorithm of the transformation is
taken up in the next section.

3. Transformation

We show detailed algorithms of transformation a UML
model into Petri nets and temporal logic, respectively.
Here we just consider simple UML sequence and state-
chart diagrams:

We assume that the sequence diagrams do not include
any loops and the statechart diagrams are not composed
of composite states and/or concurrent substates.

3.1 Dealing with Time
In the real-time systems’ design, considering timing con-
straints is very important. Here we explain how to deal

— 053 —

Gt

User

(a). usecase diagram

[User | [Contralleq | Box | | Door |

m1:req()
{(m2-m1 <1} m2:goto(fir)
m3-m2 < 3}
m3:open()
{m4-m3 < 4} ||_m4:close(

(b). sequence diagram

reg/move(flr)
after(3)/close() moving
ldo/move()l
arrived
hold_openje—/2P€0 [waiting

(c). statechart diagram

Figure 1. UML description of an elevator system

with Time in the UML design. Two kinds of timing
information are needed to be modeled:

Latency: which is the amount of time it takes for two
objects to communicate each other

Duration: which is the amount of time for an object to
execute its processing since it has received message

To put it concretely, we consider the sequence dia-
gram. As shown in Figure. 2, the life cycle of an object
can be regarded as a sequence of activations and com-
munications.

Latency is described in UML by attaching the value to
the corresponding message and duration to the active-
tion. For example, T, shows a latency and T, a duration
in Figure. 2.

When it comes to statechart diagrams, we need to
treat staying time at a state.

3.2 Transformation into Petri nets

In the real-time systems design, four types of com-
munication primitive can be considered; synchronous
sending, receiving, and asynchronous sending, receiving.
These are denoted by different types of arrows in the
UML as shown in Figure. 2.

Let us consider Petri nets representation of the se-
quence diagram. An activation is expressed by a timed
transition such that the activation time (duration) cor-
responds to the firing time of the transition.

Synchronous sending is represented by the net in Ta-
ble. 1 (c). The firing of ¢{; means sending a message and

that of t5 does receiving the acknowledge(or some return
value). After firing of t5, the object can perform the
following activation. On the contrary, the synchronous
receiving can be represented by the net in Table. 1 (d).
Timed transition ¢ corresponds to the processing in the
procedure and T(t') is the processing time.

Each pair of message™ and message® is connected
by the net in Table. 1 (b). Timed transition ¢; represents
the message transmission and T'(¢;) is its Latency.

Asynchronous sending requires just an immediate tran-
sition as shown in Table. 1 (e¢). For the asynchronous
receiving, the mail bor is introduced shown as Fig-
ure. 1 (f). During the activation the receiver object
can fetch messages from the mail boz. Both timed
transitions t; and t compose an activation, that is, t;
is the beginning and t; the ending part. Therefore
T(t1) + T(ty)=T.

Similar to the synchronous communication, each pair
of message™ and message™ is connected by the net in
Table. 1 (b). So now the transforming is summarized as

follows.
<sequence diagram = PNs>

1. Transform each component in lifeline to subnet
in accordance with the rules in Table. 1

2. By introducing a place, connect between subnets

3. Connect by the subnet in Table. 1 each pair of
message™ and messaget

In case of statechart diagrams, the transforming is
easy, just replace each messages by a transition and each
state by a timed-place and introduce arcs in Petri nets
to connect transition-place pairs.

3.3 Interval Temporal Logic

ITL(Interval Temporal Logic) uses a sequencing model
operator as its basis. In this logic, it is very easy to
express control structures in conventional programming
language|2].

We show informal visual representation of basic oper-
ators in ITL. An interval is a finite line which has the
number of clock ticks. An operator empty is true on the
length 0 interval.

The nextoperator @P means P becomes true after
one clock cycle. Thus, in ITL @P’s interval must be one
clock cycle longer than P’s and @P is false on the empty
interval. P can be any temporal logic formula.

..—.synchronous sending

SRR
N.—
.—.—asynchronous sending

___synchronous receiving

d

N asynchronous receiving

Figure 2. life-cycle of an object

— 654 —

Table 1. transformation rules

| UML { Petri nets
activation
activation
(a) T
message
T
®& > t
T=T(l’.)
synchronous sending
activation
t
message ”
(c) .
‘. message
activation
synchronous receiving
activation
message "
(d) .
message’
1
activation
synchronous sending
activation
(e)
message ”
activation 4
synchronous receiving
ivati actlvation
.. n
. meassage *-
(f) i '}T § }T
K t:
- activation

We introduce the chop operator '&’ which combines
two intervals. P&Q roughly means “do P then Q”.

We can verify timing constraints of real-time sys-
tems by these temporal operator apply to UML models,

though we may leave the details to [2].

The following description illustrates that a technique
to translation of sequence diagram and statechart dia-

gram into ITL.
<sequence diagram = ITL>
String seq2itl() {
String expression;
while(until message is empty) {
/* to ignore return message */
m; = current_message;
mi+1 = next_message;

ti = (miy1) — (mi);

expression.append(“A “+
“(m; A @(less(ti) A mi+1))“);
}

return expression;

}

— 655 —

<statechart diagram = ITL>

String state2itl() {
String expression;
while(to visit all states) {
si = current_state;
while(state is connected to s;) {
Si+1 = next_state;
ei+1 = connected edge to siy1
t; = s;.process_time ;
String current = “(" +s;;
String future = (" + less(t;);
if(ei4+1 has event)
current.append(A + event + ")");
if(ei+1 has guard_condition + “)")
current.append(A + guard_condition)
if(ei+1 has action) {
future.append(A + action&s;y1 + “)")
} else future.append(A + siv1 + “)");
expression.append(A + ((current) A
Q(future)));
}

}

return expression;

}

‘,._‘m4;clnse(L~..

(a). sequence diagram

(b). statechart diagram

Figure 3. transformed real-time systems

4. Example

Let us consider the elevator system shown in Fig-
ure. 1. First, we transform the sequence diagram and
statechart into Petri nets. Figure. 3(a) and Figure. 3(b)
indicate the transformed results. There are many re-
ports for performance evaluation based on Petri nets in
the literature[4, 5].

Secondly, we express timing constraints of elevator
system in ITL. The ITL representations of the eleva-
tor system(Figure. 1) transformed by our algorithm are
presented in below.

«sequence diagram>>
(my1 A (less(1) A@Qmg)) A
(mg A (less(3) A @mg)) A (mg A (less(4) A @my))

< statechart diagram>>
(((moving A arrived) A @(less(1) A waiting)) A
((waiting) A @(less(1) A (open()&hold_open))) A
((hold_open A after(3)) A
@(less(1) A (close()&moving))))

[2] introduced several methods of verification, and im-
plements automatic theorem provers for ITL.

In spite of importnce of verification methods, it is not
the main point in this paper. We will treat the details
at other papers.

5. Conclusion and future works

This paper proposes a transformation technique of
UML model(sequence diagram and statechart diagram)
into Petri nets and ITL, respectively, for real-time sys-
tems design and shows a small example.

Our future works are to implement a support system
based on UML and to evaluate its efficiency.

References
[1] Object Management Group, “OMG Unified Model-
ing Language Specification version 1.3,” 1999.

[2] S. Kono, “Automatic Verification of Interval Tempo-
ral Logic,” TM-92-007, 8th British Colloquium For
Theoretical Computer Science, 1992.

(3] M. J. McLaughlin and A. Moore, “Real-Time Exten-
sions to UML,” Dr. Dobb’s JOURNAL, Dec., 1998.

[4] G. Balbo and M. Silva ed., “Performance Models
for Discrete Event Systems withSynchronous: For-
malisms and Analysis Techniques,” MATCH Hu-
man Capital and Mobility CHRX-CT94-0452, vol.
II, 1998.

[5] C. Girault and R. Valle ed., “Systems Engineering:
A Petri Net Based Approach to Modelling, Verifica-
tion, and Implementation,” MATCH Human Capital
and Mobility CHRX-CT94-0452, 1998.

— 656 —

