Proceedings of XITC-CSCC 2000, Pusan, Korea

Analytical Models of Instruction Fetch on Superscalar Processors

Sun Mo Kim

Jin Ha Jung

Sang Bang Choi

Dept. of Electronic Engineering, Inha University
253 Younghyun-Dong, Nam-Gu, Inchon, 402-751, Korea
Tel: +82-32-860-7417, Fax: +82-32-868-3654
E-mail: sangbang@inha.ac.kr

Abstract: This research presents an analytical model to
predict the instruction fetch rate on superscalar processors.
The proposed model is also able to analyze the performance
relationship between cache miss and branch prediction miss.
The proposed model takes into account various kind of
architectural parameters such as branch instruction probability,
cache miss rate, branch prediction miss rate, and etc.. To
prove the correctness of the proposed model, we performed
extensive simulations and compared the results with those of
the analytical models. Simulation results showed that the pro-
posed model can estimate the instruction fetch rate accurately
within 10% error in most cases. The model is also able to
show the effects of the cache miss and branch prediction
miss on the performance of instruction fetch rate, which can
provide an valuable information in designing a balanced sys-
tem.

1. Introduction

The goal of a superscalar microprocessor is to execute mul-
tiple instructions per cycle. It relies on instruction level pa-
rallelism (ILP) to achieve this goal. However, all of this po-
tential parallelism will never be utilized if the instructions
are not delivered for decoding stage and execution stage at a
sufficient rate. Moreover, as the performance gap between
processor and main memory continues to widen, cache per-
formance is one of the most critical factors affecting the
whole system performance.

Enormous amount of research focuses on improving the
cache behavior until now. But simulation based methods can
not precisely explain the obtained results. Moreover, when a
new processor is designed, huge simulations must be perfor-
med again with several different parameters. To compensate
for these drawbacks, some recent studies showed alternative
methods that analytically explained the behavior of cache
process. Wallece and Bagherzadeh proposed analytical instruc-
tion fetch model and introduced a new fetching mechanism
called a dual branch target buffer[I]. But he did not consi-
der the effects of cache miss and branch prediction miss on
fetch processing. In fetch stage, if cache miss occurs, cache
memory cannot offer instruction blocks any more and must
wait for the transfer of another blocks from secondary sub-
memory. Fetch stage must be paused during these cycles.
Also, to reduce branch penalties, most recent processors use
various techniques such as branch-prediction buffer, branch
-target buffer, delayed branch, loop unrolling, etc.. But no
method can perfectly resolve branch penalties. If a branch
prediction is incorrect, all successive instructions fetched from
the wrong path after the branch must be removed from all
stages. Therefore, fetching of instructions is constrained by
above two major factors: cache miss, and branch prediction
miss.

This paper suggests an analytical models that can pre-
dict instruction fetch rate for superscalar processors consi-

dering cache miss and branch prediction miss. And the
proposed model takes into account such factors as branch
instruction frequency, cache miss rate, cache miss penalty,
branch prediction miss rate, and branch prediction miss pe-
nalty. Thus the proposed model can disclose the effects of
various factors on instruction fetch. We assumed four cache
models which can be applied to superscalar processor. Firstly,
in each model, we showed analytical models of instruction
fetch assuming no cache miss and perfect branch prediction.
Secondly, according to instruction access patterns and occu-
rrences of cache miss and branch prediction miss, instruction
fetch processing are divided into various cases. And con-
sidering additionally wasted clock cycles, instruction fetch
rates of first step are modified.

To prove the correctness of the model, we performed
extensive simulations and compared the results with the anal-
ytical model. Simulation results showed that the proposed
model can estimate the expected instruction fetch rate accu-
rately within 10% difference in most cases. This paper also
shows that the decrease of instruction fetch rate is more
affected by increase of cache miss rate rather than that of
branch prediction miss rate. Similarly, the effects of cache
miss penalties are bigger than the those of branch prediction
miss penalties. Thus we can know that cache miss must be
minimized in designing new superscalar system.

The proposed models are able to show the effects of
cache miss and branch prédiction miss on instruction fetch
rate, and also able to more accurately analyze the relation
between cache miss and branch prediction miss.

2. Analytical Models of Instruction Fetch

2.1 Instruction Fetch on Superscalar Processor

Fig. 1 shows the instruction fetching block diagram on super-
scalar processors. The transfer of instructions from cache me-
mory to pipeline's decoding stage is called instruction fetch
and the number of instructions fetched per clock cycle is
called instruction fetch rate. The instruction fetcher is respon-

Sub-memory

'

Instruction Cache

l predicted PC

Instruction Fetcher

T

Instruction Decoder

branch
misprediction
information

Fig. 1. Instruction Fetching Block Diagram.

— 619 —

sible for determining the new starting PC and sending it to
the instruction cache. Instructions after the first branch in-
struction are invalidated.

Let n be the width of a cache block and b the proba-
bility that an instruction is branch instruction. The expected
number of instructions which can be sequentially fetched is
as follows.

L(n, b)

n(1—b)"+ g;z'(l—b)"_]b

= 1=U=b))
b

2.2 Simple Cache

Simple cache has the line size equal to the width of the
fetch block. As with all fetching techniques, instruction fet-
cher can search one cache line each cycle but if there is a
branch instruction, instructions after it are invalidated. Fig. 2
shows an example for the simple fetching mechanism.

Starting PC

Cycle 1
add branch -
Line O:
fetch block 0 fetch block 1
Cycle 2 predicted PC
sub jum, =
Line 1: I I ume l |

fetch block 0 fetch block 1

Fig. 2. Simple Fetching Example.

Let S,;(n, b) be the probability the starting address in the
block is at position i, and C;(xn, b) be the probability a
branch occurs at position i.

Si(n & =(1-C(n, p)+-CL28)

—1- ”;1 C(n, b

S.(n. b)=g%—bl, 2<i<n

c;(n, b)= Zlb(l—b)"" - S;(n, b) (2)

where C(n, b) is the probability that a branch occurs in a
cache block.

Cln, B= Zci(n, = ——2— (3)
3+n—1

The expected fetch rate for simple cache is as follows.

F e (,) = 21Si(n, B) - L(n—i+1,)

= T @
I+b6(n—1)
Starting PC
Cycle 1 +
Line 0: [add I load ! sub I is) I sub ! load l
fetch fetch fetch fetch save save
block O block 1 block 2 block 3 buffer 1 butfer 2
Cycle 2 smvesuror: | | swe | toaa |

fetch fetch
block O block 1

ven]] T T T L]
v

fetch
block 2

Line 1:

Cycle 3 Predicted PC

Fig 3. Extended Fetching Example.

2.3 Extended Cache

Fig. 3 shows extended fetching example. This technique ex-
tends the instruction cache line size beyond the width of the
fetch block and has buffers to save the last n-1 instructions.
Next cycle, the instruction fetcher can combine them with
instructions that are read from another cache line. The ex-
pected fetch rate is as follows.

m_n L(n,b)+%Fsimple(n, b)

Fexf@nded (n, b, m) =

m
(m—n) A-1A-=-58"

m b
B (5)

m (Q+b(n—1)

2.4 Prefetch Cache

Among various prefetch techniques, this paper assumed that
the instruction fetcher has prefetch buffers to be able to pre-
dict the next starting address with one branch instruction in
prefetch buffer. Fig. 4. is fetching example of prefetch cache.

Cyele 1 Prefetch Buffer
Starting PC
tneo: | asr | and [suo | s1 | add | toad Joranch | | [emwty [empty [emoty empty]
dedode dedode deoode demods | ; :
block 0 block 1 block 2 block 3
Cycle 2
v v v s
tine2: [add | catt | ! T I I I] [[a4a | oaa Jbrancn |]

decode decode decode
block 0 block I block 2

decode prefetch
black 3 buffer 0

Fig. 4. Prefetch Fetching Example.

The expected fetch rate is as follows.

F pyejorc (n, b, m) ==L L(n8)+ZL(nb)

m
—(1=5)"
=L(n b=] lb (6)
2.5 Interleaved Cache
Pil Bank 0 Plil Bank 1
Line 0: [‘ add branch l Line 2: I | Is jump f l
) vy
fetch fetch fetch fetch
block O block 1 block 2 block 3
Fig. 5. Interleaved Fetching Example.
Conte introduced the concept of memory banks into the

cache structure[2]. Instruction fetcher can predict next two
target addresses from current PC using multiple branch pre-
dictor. With these two predicted PCs, individual two simple
caches are referenced simultaneously.

F interleaved (n, b) = 2F simple (n, b) (< n) (7)

3. Analytical Models Considering Cache
Misses and Branch Prediction Misses

3.1 Simple Cache and Extended Cache

If an instruction cache miss occurs or a branch prediction is
wrong, instructions can not be fetched any more during the
miss penalty. We will consider additionally wasted cycles due
to cache misses and branch prediction misses. Let B be the
frequency of branch instructions in program, R¢ be cache
miss rate, Rz be branch prediction miss rate, P- be cache
miss penalty, Pz be branch prediction miss penalty, and C;

— 620 —

be additionally wasted cycles in case /.

Table 1. Fetch Processing Considering Various Factors.

S‘igg::;;al Non Sequential Access
CH CM
H CM BPM BPM
¢ BPH BPH
CH CM CH CM
_ |Consider| _ |Consider{Consider|Consider|Consider|Consider
Pe Pg Pc, Pg Pc Pe, Pg | Pe, Ps
case(1)| case(2) | case(3) | case(4) | case(5) | case(6) | case(7) | case(8)

CH: Cache Hit, CM: Cache Miss,
BPH: Branch Prediction Hit, BPM: Branch Predictin Miss.

Table 1 shows the instruction fetch processing accor-
ding to cache access patterns, cache miss occurrences, and
branch prediction miss occurrences to compute additionally
wasted cycles in each case i. For example, In case 2, inst-
ruction fetcher sequentially access the next cache line but the
requested instruction cannot be founded(cache miss). Until the
instruction is replaced from sub-memory, cache cannot serve
fetch processing any more. Therefore, we must consider
wasted cycles due to cache miss penalties corresponding to
instructions in case 2.

CZ:(I_B)‘Rc'PC (8)
Additionally cycles can be calculated each case.

Ci=B-(1—R¢)* Ry Py

Cs=B-(1—R¢) Rp- Rc- (Pc+ Pg)

Cratal = ZC, = Cz'*‘ C4+C5+ C6+ C7+ Cg (9)

Cww means additionally wasted total cycles for executing
whole instructions of program. Thus, equations (4) and (5)
can be modified as follows.

r original

1+ Cl‘otal (10)

F modified ~

3.2 Prefetch Cache
In case of prefetch cache, different fetch rates must be
applied according to each case. The fetch rate of prefetch
cache, equation (6), just can be applied to instructions corres-
ponding to case(l) and case(3).
[(A-BO—-Re)
+B(1_RC)(1_RB)] * Fprefefch

= W-F prefetch (11
However, if an instruction cache miss occurs or a branch
prediction is wrong, the fetch rate of extended cache must be
used because only instructions in prefetch buffer can be fet-
ched.

F case(1) + case(3)

(1 _ m . Fextended

Fc-ase(2)+ gdcase(z) = 1+ Crotal (12)
The modified fetch rate of prefetch cache is as follows.
F tended
Fmodi/ied: w- Fbrefetch+ a-w - 1_?’5;”1 (13)

3.3 Interleaved Cache

Table 2 and table 3 show the instruction fetch processing in
interleaved cache like table 1 and mean sequential cache
access and non sequential cache access respectively.

Table. 2 Fetch Processing Considering Various Factors of
sequential cache access in interleaved cache.

Bank 0,1 CH Bank 0 CH
Bank 1 | Bank 1 Bg{}l B
BPH BPM ank 1 BPH|Bank 1 BPM
- - - Consider Pc | Consider P¢
Case(1) | Case(2) | Case(3) Case(4) Case(5)

Table. 3 Fetch Processing Considering Various Factors of
non-sequential cache access in interleaved cache.

Bank 0,1 CH Bank 1 CM Bank 0 CM
Bank |Bank 1| Bank 0 [Bank 0[Bank 0| B2% | Bank 1{Bank 0
BPH BPM | BPM | BPH | BPM BPH BPM | BPM
_ _ [|Consider] _ |Consider|Consider|Consider|{Consider,
PB PB P(‘ P(‘ P(‘, Plj
Case(6)|Case(7)| Case(8) {Case(9)|Case(10)|Case(11)|Case(12)|Case(13)

In case of interleaved cache, all instruction fetch pa-
tterns are classified into four groups. First group(W)) is a set
of cases which apply only simple fetch rate, second one(Wy)
is a set of cases which apply simple fetch rate considering
additionally wasted cycles, third one(Wn) is a set of cases
which apply interleaved fetch rate, and the last one(Wyy) is a
set of cases which apply interleaved fetch rate considering
additionally wasted cycles.

Wy = W39
(1-B)(1—RA)*Rp+(1— BY{1— RO)R,
+B(1—R)*1— Rp)Rp+ B(1— RRA1— Rp)
Wy =W =(1-B) - Rc- Rg+B-Rc-(1-Rp) ' Rg
W = W
(1-B) (1 -R)X1—Rp)+ B(1— R)X1— Rp)*

Wiv =Wisons=1- i:l W, (14)

=
The subscripts of second term mean corresponding cases in
table 2, 3. If we consider all conditions, the fetch rate of
interleaved cache can be modified as follows.

I

F simple
1+ G5+ Cyy
F interleaved

Fmodified = WI) Fsimpk+ WII) + WIII . Finterleaved

+ W[v . (15)

4. Simulations and Analyses

4.1 Simulator

In our simulations, we employ the basic fetching model as
shown in Fig. 1. For precise modeling of fetch processing,
the simulator is coded with C++. Benchmark programs are
compiled using GNU C/C++ compiler with standard option in
the SPARC workstation. To get instruction execution traces,
we used Spy program which is included Spa package [3].

In the simulation model, if cache line include a branch
instruction, all instructions after it are invalidated and if
cache miss or branch prediction miss occurs, the cache
cannot serve fetch processing any more until the miss is
resolved. Parameters such as the frequencies of branch inst-
ructions B, cache miss rate R¢, and branch prediction miss
rate Rp are acquired from simulations. Table 4 shows four
benchmark programs used to generate instruction traces and
values of the frequencies of branch instructions.

— 621 —

Table 4. Benchmark Programs used to generate Instruction

Traces.
Program GCC |Compress| Li Tomcatv
The Frequency of
Branch Instruction (%) 13.333 | 10.070 | 14.493 | 0.0455

4.2 Analytical Models and Simulations

The used cache models has 256 entries and 8 cache line size
and uses direct-mapped placement method. we assume that
Re is 10%, Rp is 5%, Pc is 5 cycles, and Pp is 2 cycles.
Fig. 6 is result of Li benchmark program and Fig. 7. is that
of Tomcatv benchmark program. Simulation results showed
that the proposed model can estimate the expected instruction
fetch rate accurately within 10% differences in most cases.

3 Analytical Models & Simulations

Inslruction | elch Rate
O =2 NWDIIOON®

Simple I xtended Prefetch Interleaved

Fig. 6. The Results of Li Benchmark Program.

22 Analytical Modets 8 Simwulations

Inslruction | elch Rate
O =N WS U N®

Simple Extended Prefetch Interleaved

Fig. 7. The Results of Tomcatv Benchmark Program.

Fig. 8 shows the effects of the frequency of branch
instructions on Li benchmark program. Fig. 9 shows the
effects of cache miss rate and branch miss prediction rate
and Fig. 10 shows that of cache miss penalty and branch
prediction miss penalty respectively on GCC benchmark pro-
gram. Simulations reveal that the decrease of instruction fetch
rate is more affected by increase of cache miss rate rather
than that of branch prediction miss rate. Similarly, the effects
of cache miss penalties are bigger than the effects of branch
prediction miss penalties. Thus we can know that cache
misses must be minimized in designing new superscalar
system.

5. Conclusion

To predict the performance of cache memories, most previous
researches have concentrated on simulation based approach.
But theses methods cannot explain precisely the causes of
performance losses. This paper presents an analytical model
to estimate the expected instruction fetch rate. The proposed
model takes into account various kind of architectural para-
meters such as branch probability, cache miss rate, branch pre-

-~ interleaved
- Prefetch
-&- [xtended
- "> Simple

Instruction f elch Rale
Q = N W s~ 0O N ®

2 4 B 8 10 12 14 16 18 20 22 24 26 28 30

Branch Instructions(9s)

Fig. 8. The Effects of Branch Instructions.

-+ Cache Miss Rate = Branch Prediction Miss Rate

Instruction f etch Rate

10% 12% 14% 16% 18% 20% 22% 24%

Fig. 9. The Effects of Cache Miss Rate and Branch Prediction
Miss Rate.

— Cache Miss Penaity - Branch Predictin Miss Penalty
7.45 -

Instruction t cteh Rate

Cycles

Fig. 10. The Effects of Cache Miss Penalty
and Branch Prediction Miss Penalty.

diction miss rate, and etc.. The proposed model can explain
practical instruction fetch rates according to various cache
structure types. To prove the correctness of the proposed
model, we performed extensive simulations and compared the
results with those of the analytical model. Simulation results
showed that the proposed model can estimate the instruction
fetch rate accurately within 10% error in most cases. From
analytical models, we fount that the performance of a cache
fetch processing is affected more severely by the cache
misses rather than branch prediction misses.

References

[1] Steven Wallace and Nader Bagherzadeh, "Modeled and
Measured Instruction Fetching Performance for Super-
scalar Microprocessors,” IEEE Trans. Parallel and Distri-
buted Systems, vol. 9, no. 6, pp. 570-578, Jun. 1998.

[2] Thomas M. Conte, Kishore N. Menezes, Patrick M.
Mills, and Burzin A. Patel, "Optimization of Instruction
Fetch Mechanisms for High Issue Rates," Proc. 22nd

Ann. Int'l Symp. Computer Architecture, pp. 333-344,
June 1995.
[3] Gordon Irlam, "Spa" Personal Communication 1995.

http://www.base.com/gordoni/spa/cat]/spy.1

— 0622 —

