Proceedings of ITC-CSCC 2000, Pusan, Korea

Design of CAN-based System for Distributed Control

Jin-Woo Park, Dong-Gyu Noh, Jang-Myung Lee
Electronics Engineering, Pusan National University
Jang-Jung Dong, Kum-Jung Ku, Pusan, 609-735, Korea
Tel: +82-51-510-1696, Fax: +82-51-515-5190
E-mail: jwpark@mail.pusan.ac.kr

Abstract: In this paper, we propose the design method
of distributed control system using Controller Area
Network (CAN). CAN is an advanced serial
communication protocol for distributed real-time control
systems. It is a contention-based multi-master network
whose timeliness properties come from its collision
resolution algorithm, which gives a high schedulable
utilization and guaranteed bus access latency. With
proposed method using CAN, we apply to robot
controller. The effectiveness of proposed method is
demonstrated by the simulation and experiment.

1. Introduction

In motion control of robot or motors, one does not
usually consider communication constraints. It is often
presumed that a host computer can send torque, position
and position commands to motors within a short control
period (e.g. several milliseconds). Assuming this
condition, many effective feedback controllers have been
proposed. However, there are situations where
communication between the host and the robot or motors
is limited [1].

Generally, interface protocol for Communication
between the host and other controllers, still widely used,
is asynchronous serial communication (RS232C).
However, the fastest available communication speed
using RS232C is 115.2Kbps and when motors are
configured using a daisy-chain communication bus, the
communication speed decreases as the number of motors
increase. Therefore, it can’t be applied for real-time
control.

In order to solve above communication constraints,
Control system have distributed structure and reduces
data transmitted through the channel and stored in the
module. Instead if doing motion control exclusively in a
central processor, It is delegated some parts of motion
control to distributed motor modules. The modules
include a micro-controller for position, velocity and
torque control. In this control structure, control states of
a motor such as position, velocity and torque, are not
controlled by the central processor but by the module
itself [2].

One of method for implementation, there is Controller
Area Network (CAN) [3]{4]. CAN is suitable for real-
time control system. CAN is a serial bus system
especially suited for networking "intelligent" devices as
well as sensors and actuators within a system or sub-
system. All CAN nodes are able to transmit data and
several CAN nodes can request the bus simultancously.
The maximum transmission rate is specified as 1M bit/s.
One of the outstanding features of the CAN protocol is
its high transmission reliability. The CAN controller

registers a stations error and evaluates it statistically in
order to take appropriate measure. Therefore it efficiently
can be transmitted and received data for real-time data
exchange.

In this paper, we propose the design method of CAN-
based system for distributed control and apply CAN to
distributed control for motors. This paper is organized as
follows. In the section 2, we analyze CAN. Section 3
deals with how to design of distributed system by using
CAN. In the section 4, Proposed method is applied to
Robot controller. Experiment and simulation results
present the advantage of proposed method. Section 5
presents conclusions drawn from this work.

2. Controller Area Network (CAN)

CAN is a broad bus with a multi-master architecture.
The transmission medium is usually a twisted pair cable.
The network maximum length depends of data rate.
Typical bounds are: 40m @ 1Mbps, 1000m @ S50kbps.
Bit transmission takes possible representations: recessive,
which only appears on the bus when all the nodes send
recessive bits; dominant, which needs only to be sent by
one node to appear on the bus. This means that a
dominant bit sent by one node can overwrite recessive
bits sent by other nodes. This feature is exploited for bus
arbitration. A given bit-stream is transmitted using the
NRZ code. Data transfers are subject to a bit stuffing
technique that prevents more than five consecutive bits
of identical polarity to be transmitted, through automatic
insertion of a complementary bit.

Accordingly with CAN terminology, data to be

. transferred is encapsulated within “communication

objects”: a unique identifier is assigned to each
communication object. The Controller Area Network is a
carrier sense multi-access with collision resolve network:
nodes delay transmission if the bus-line is in use; when a
bus idle condition is detected, any node may start
transmitting; bus access conflicts are resolved through
comparison of communication objects identifiers and
work as follows [5]:

¢ While transmitting a communication object identifier,
each node monitors the serial bus-line;

o If the transmitted bit is recessive and a dominant bit is
monitored, the node gives up from transmitting and
starts to receive incoming data;

o The node transmitting the object with the highest
identifier will go through gets the bus

That means: arbitration is non-destructive, since transmi-
ssion of the highest identifier object undergoes without
delay; bus access is prioritized, allowing transmission of

— 600 —

more urgent data to takeover less urgent one. Automatic
retransmission of a communication object is provided
after a loss in an arbitration process.

CAN defines four types of message packets: data
frame, remote frame, error frame, and overload frame. A
data frame is used to send some data to other devices,
and it can have up to 8 bytes of data. A remote frame has

the same structure of the data frame, except the data field.

The remote frame has no data, and it is used to request
data from a remote device. An error frame is used to
notify all devices on the network when an error is
detected, while an overload frame is transmitted when a
device is not ready to receive another frame.

The integrity of data and remote frames is checked by
a cyclic redundancy code (CRC) 15 bit sequence
particularly well suited to check the integrity of frames
with a total bit length less that 127, thus providing a
good error detection coverage [6].

In summary it can be said that CAN implements a
traffic-dependent bus allocation system that permits, by
means of a high useful data rate at the lowest possible
bus data in terms of the bus busy rate for all station. The
efficiency of the bus arbitration procedure is increased
by the fact that the bus is utilized only those stations with
pending transmission requests.

3. Design of Distributed System

In a distributed control system a number of nodes are
connected through a shared communication network.
Therefore, resource sharing or scheduling is a topic of
major importance. If several time-critical control
activities are multiplexed onto a computer system it is
not sufficient to provide a fast computer system.
Scheduling policies determine which entity (e.g. process
or message) that at a given time instant can use a given
resource.

Designing a distributed system around CAN requires
the identification of the appropriate level of system
decentralization and a suitable system organization.
When it designs distributed system using CAN, It has to
be considered as follows:

¢ Establishing a global clock for synchronization - CAN
doesn’t specifies a global clock but, provide a base for
implementing clock synchronization [7].

o Several scheduling policies can principally be used at
the CAN — However, it has to notice when it decide
scheduling policy because CAN has the fixed error
handling policy [8][9].

o Allotting Identifier — It is important to base these
decisions on application (message) requirements with
respect to consistency and real-time behavior.
Identifier of the most important data has the lowest
value than other data.

The procedure of design for system based on CAN is
illustrated in Fig 1. First, we set numbers of node that are
applied in the system and then define sample time and
allot ID [Identifier] by priority. In case of allotting ID at
CAN, the ID of data of importance or urgency has higher
priority than other data. That is, high priority data has

low ID than lower priority data. Next, it checks whether
data can be processed within designed sampling time. If
it satisfies its demand then next step is processed, if not,
redesign is needed. Last, it applies for prototype system
and it compares result of simulation or experiment. If it
isn’t same then redesign is needed.

START

SET NUMBERS
OF NODE

!

SET SAMPLING TIME AND

——— ALLOT ID
B8Y PRIORITY
NO SIMULATION

(Check whether data can be
processed within sampling time)

¢ YES

NO APPLY FOR PROTOTYPE
(Compare result of
simulation and experiment)

YES

Fig. 1. Flow chart for system design based on CAN

4. Application : Robot Controller

We redesign robot controller of SCORBOT-ER VII in
Fig. 2 for application example of distributed system.
Originally, SCORBOT-ER VII that is made by Eshed
Robotics in 1991 communicated with host computer
through serial. It is impossible for implementing our
project that is the development of tele-operation surgery
system because serial communication between two
controllers is too late for real-time data exchange. So, we
apply CAN system to robot controller for real-time
communication and redesign hardware instead of old
robot controller.

4.1 Simulation

For CAN-Communication transmission time is always
constant for a message (error free transmission assumed),
but for the waiting time until transmission no fixed value
can be given. It depends highly on the bus load and the
priority of the message. Worst case waiting times can
only be given for high-priority message. For lower
priority message mean values and statistical techniques
have to be used to assure feasibility of the design under
the given network load. Therefore, It is considered
probability of collision of message and sample time
under design step. When above consideration 'is
examined, the CAN simulation is convenient for
examination.

— 601 —

Fig.2 SCORBOT-ER VII robot

There are methods and tools for simulation [10][11].
In this paper, we used CAN simulator of I+ME ACTIA.
We simply simulated whether messages transmit
correctly within wanted time at 3 axes, and message
transmission with noise. First, Input of transmission
simulation is shown in Fig. 3 in a syntactical form
accepted by CAN simulator.

S T B L T

Filename : C:N\CANBUCH\ROBOT.EDT
NETLIST:

HodeName :

NODE MESSRGE NAME ID |txs| BTR |TXREPETITION [ws]|TXOFF|RXDLY|LENGTH
hex |rx [[Y/H)imode | {1 t2 {ms] {Ims] [{byte}

1 |FIRST_JOINT_AXIS 4 tx const|20.68 0.100 2

1 [SECOND_JOUINT_AXIS 4 tx const{26.68 0.180 2

1 |THIRD_JOINT_AXIS 6 tx const}20.60 ©.100 2

1 [FIRST_J_POSI!_VEL 3 24] 10.00f 3

1 {SECOND_J_POSI_VEL E) rx N 10.00f 3

1 |THIRD_J_POSI_VEL ? rx N 190.08f 3

Z |FIRST_JOINT_AXIS 2 23 N 10.00f 2

2 {FIRST_J_PUSI_VEL 3 tx const|26.68 1.000 3

3 {SECOND_JOINY_RXIS 1 rx N ig.0e0| 2

3 |SECOND_J_POS1_VEL 5 tx const |26.60 1.000 3

4 |THIRD_JOINT_AXIS 6 ™ N .00 2

1. THIRD_J_POS1_UEL ? tx const |26.60 1.006 3

Fig. 3. Simulator definition of message

At Fig. 3, the simulation network consists of six
transmitter and six receiver definitions. The message
with symbolic name FIRST_JOINT_AXIS is assigned to
network node 1. The assigned CAN identifier is 2 and
the message is defined as transmitter(tx).

The field TXREPETITION defines that the message
FIRST JOINT AXIS will be transmitted once every
20ms. In that case 0.1lms time delay will be required
before transmitting for the first time. With each
transmission 2byte data information will be transferred.
The corresponding receiver(rx) with an identical
symbolic name and identifier is defined in network node

Fig. 4 shows simulation result. The right section of
figure presents the average bus load , the number of
delayed messages. The central part of the screen is
filled with a delay profile of all transferred messages. We
obtain, for example, the information that 60% of
transferred message have been delayed less than 149ms.
In the simulation, Number of lost message (LostMess) is
none and the maximum delay time (MaxDIyT) is 228us.

Second, we did simulation in case that it exist noise in
the bus line. We assumed that noise is occurred every
5ms and also examined bus load and maximum delay

time by changing noise length. The number of actual
transferred message is 1000. The result is showed in
Table 1.

Input Butput Transkate Nodes Transm Receiv Nolses RdStU
—
plyTime [KENNERR | A1) 1D =% nlrans: 1008 actual BusLoad
MaxDiyT Lps] % Rate of Delayed Mess. | DlydMess
222 160 | —
Lostriess (NN | 222 | — TineFact SENKINWR
201 B9 | mm—
LostArd 261 [re— nTrans _ Limit
143 60 | m—
Diydtess 135 —
135 40 | e HodTime Limitlms1
LenGueue " —
4 20 {mm
HaxLenQu |IENNERENNED 67 — SiuTime Clack
oI
Remote 100 260 300 480 560
DiyTime [psl

Simnlation §s terminated

Fig. 8. Result of simulation

Table 1. Transmission under existing noisy environment

001 | 47 326

0

0.05 52 430 0

5 0.1 59 480 0
1] 175 2,400 0

2| 288 4,400 0

3] 39.1 7,600 4

Even in a noisy environment, In the case of CAN,
most messages are transmitted within wanted time. But if
too much noise (3ms) existed in bus line, lost messages
are appeared (LostMess:4). Therefore, it is needed
hardware design technique for no occurring a noise.

4.2 Experimental Setup
The Specification of re-designed robot controller is as
like Table 2.

Table 2. Robot controller specific

Number of Motor 5
Sub-controller 87C196CA [Intel]
Transmission data rate 1M bit/s
Control algorithm s_Independ(:rxll‘:t:l(:)i(rllt Control
Sampling time 1m sec

Based on proposed design method, robot controller has
developed. It consists of 5 sub-controller that is based on
micro-controller (80196CA) as like Table 2 [11], and
host controller (Windows NT). Host controller calculates
trajectory generation of robot and sends calculated value
to sub controller. Sub controller receives commands of
host computer through CAN and controls each axis of
robot and sends position, velocity information to host
computer. We control robot using independent joint
control method [12]. Sampling time of host computer
and sub controller are 20[mSec] and 1[mSec]
respectively. We used CAN for Communication between

— 602 —

two controllers. Transmission data rate is 1M bit/s.
One of modules of robot controller is as like Fig. 5. Fig.
6 is overall block diagram of distributed control system
of robot.

87C196CA
Fig 5. A module of Robot controller

Sub Controller
(87C196CA, tmsec)

Veloctity. position
contiol

Velocity, position
control

(——
E—;

Velocity, position

SCORBOT-ER VI

~Main Controller Position Velocity,
(Windows NT, 20msec) control position

Desired X, . z
pasition

CAN
communication
(1Mbps)

Forward kinematics
Estimation x. v. z
position

Figure 6. Overall block diagram of distributed control
system of robot.

4.3 Results

We executed the experiments that end-effector of robot
move toward Y-axis by constant velocity of 1 cm/sec
during 5 sec. Initial and final position of Robot are [X :
200, Y : 65, Z : 100 mm], [X : 200, Y : -35, Z : 100 mm]
respectively. The results are showed in Figure 7.

(a) Error of X Y-axis (b) Error of X-axis

(c) Error of Y-axis (d) Error of Z-axis
Fig 3. Result of simulation

Figure 7 shows that the results of experiment converge
given trajectory within the error of 2mm.

5. Conclusions

In this paper, we proposed the method of design of
CAN based system for distributed control. The own
properties of CAN, open structure, flexibility, complete
communication protocol offers an optimal platform than
other sensor level protocols. To show the efficiency of
proposed method, we applied it to robot controller and
real experiment and simulation are preformed. The result
show that CAN is a good way to perform distributed
processing, essential characteristics in distributed system.

We are in the process of adding CAN network to
haptic interface system for remote control. After making
the system, we will analyze time delay of two distributed
system at the public line and propose the method of
minimizing time-delay for real-time communication.

References

{11 KH. Kim, N.J. Ferroer, “A Distributed Control
Scheme for Motor Networks with Communication-
Constrained Channels,” Proc. Of IEEE Int. Conf.
on Robotics & Automation, pp. 207-212, May, 1999.

[2] S.Y. Lee, J.W. Lee, D.S. Choi, M.S. Kim, C.W. Lee,
“The Distributed Controller Architecture for a Master
arm and its Application to Teleoperation with Force
Feedback,” Proc. Of IEEE Int. Conf. on Robotics &
Automation, pp. 207-212, May, 1999.

[3] ISO DIS 11898 — Road vehicles — Interchange of
digital information — Controller Area Network
(CAN) for high-speed communication, 1992.

[4] CAN Specification version 2.0. Robert Bosch GmbH,
1991.

[5] IM. Lee, S. Lee, M H. Lee, K.S. Yoon, “Integrated
Wiring System for Construction Equipment,”
IEEE/ASME Trans. on Mechatronics, vol. 4, no. 2,
June, 1999.

[6] Jose Rufino, Paulo Verissimo, “A Study on the
Inaccessibility Characteristics of the Controller Area
Network,” Proc. International CAN Conference 95,
pp.7.12-7.22, 1995.

[7} R. Tuominen, T. Virvalo, “Synchronization of Servo
system Using CAN,” Proc. International CAN
Conference 95, pp.9.12-9.20, 1995.

[8] K. M. Zuberi, K.G. Shin, “Scheduling Message on
Controller Arca Network for Real-Time CIM
Applications,” IEEE Trans. on Robotics and
Automation, vol. 13, no. 2, April 1997.

[91 M.A. Livani, W.J. Jia, “Scheduling Hard and Soft
Real-Time Communication in the Controller Area
Network (CAN),” 23™ IFAC/IFIP Workshop on Real
Time Programming, China, June 1998.

[10] K.W. Tindell, A.Burms, “Calculationg Controller
Are Network (CAN) Message Response Times,”
Proc. 1994 IFAC workshop on Distributed Computer
Control Systems (DCCS), Spain, Sept. 1994,

[11] http://www.ime-actia.com/

[12} Intel, 82527 — Serial Communication CAN Protocol
Controller, December 1993.

[13] M.H. Choi, “A Formulation of Joint Disturbance
Torque and Its Application for Independent Joint
Controlled Robotic Manipulators,” IEEE Int. Conf.
on Systems, Man, and Cybernetics, Oct. 1998.

603

