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Abstract: A design method of nonlinear feedback shift
registers that can produce maximal-period sequences is
given. Such a design is based on one-to-one mappings
which are similar to well-known chaotic maps. Some
properties of generated binary sequences are investi-
gated and discussed.

1. Introduction

Several engineering applications require pseudorandom
numbers with good properties. Especially, code division
multiple access (CDMA) systems based on spread spec-
trum (SS) techniques need many kinds of pseudoran-
dom numbers called spreading sequences for many users.
Such spreading sequences play a very important role
in CDMA systems because the system performance is
dominated by their correlation properties[1][2]. In gen-
eral, auto-correlation functions of spreading sequences
are desired to be like a delta function, that is, to have
small value at every time delay except 0. On the other
hand, their cross-correlation functions are required to
be small for every time delay since they produce co-
channel interferences that cause bit errors. The linear
complexity of pseudorandom sequences is also important
if the security of communication systems is required as
in cryptosystems[3].

The best-known spreading sequences are the so-
called linear feedback shift register (LFSR) sequences
such as M-sequences, Gold sequences and Kasami
sequences[1][2]. As is well known, M-sequences are
maximal-period sequences generated by LFSRs and
have an excellent auto-correlation property. However,
the number of different kinds of M-sequences with same
period is extremely small. On the other hand, Gold
sequences are generated by modulo-2 addition of two
M-sequences with low cross-correlations, called a pre-
ferred pair and they have same period as the origi-
nal M-sequences. Auto-correlation and balance prop-
erties of Gold sequences slightly deteriorate compared
to M-sequences but there are many kinds of sequences
with good cross-correlation properties. Such a set of
sequences is called a Gold family. Hence Gold se-
quences are suitable for spreading sequences in CDMA
systems. Kasami sequences are also generated by a sim-
llar method.

As quite different methods for generating spreading
sequences, recently, there have been several attempts to
use chaotic sequences that are obtained from nonlinear

one-dimensional maps[4][5]. A conventional LFSR se-
quence and a chaotic sequence are quite different in the
sense that the former is based on a finite field (or Galois
field) and the latter, on the other hand, is based on real
numbers. However, we often compute chaotic sequences
by the help of a digital computer with finite precision,
and then, the resultant orbits are no longer real numbers
and they are eventually periodic. Such sequences are
called quasi-chaotic sequences. Nevertheless, we can em-
pirically confirm that quasi-chaotic sequences generated
by modern digital computers with 64-bit floating-point
operation are reasonably chaotic even if the calculation
of such dynamics includes round-off errors[6].

It is noteworthy that a shift register can be re-
garded as a one-dimensional map with finite bits by
observing states of the register at each time[7]. We
can easily confirm that one-dimensional maps of LF-
SRs are similar to the Bernoulli map which is a famous
chaotic map. Namely, we can consider that a shift reg-
ister is a kind of generators of quasi-chaotic sequences.
Hence, constructing such one-dimensional maps makes
it possible to generate many kinds of good pseudoran-
dom numbers including M-sequences. In general, such
one-dimensional maps are realized by nonlinear feedback
shift registers (NFSRs). Since a nonlinear feedback part
can be any logic circuits, it seems difficult to consider all
possible sequences generated by NFSRs. However, con-
structing one-dimensional maps makes it easier to design
NFSRs which can generate maximal-period sequences.

In this paper, we design such NFSRs that can
generate new maximal-period sequences and investigate
their properties. As aresult, it is shown that we can gen-
erate a large number of sequences with maximal period
by NFSRs which can be easily designed based on a fun-
damental combinational logic circuit design. Further-
more, the linear complexity of the proposed sequences
is found to be excellent in contrast with that of M-
sequences.

2. LFSR and NFSR

The most familiar example of binary pseudorandom
numbers generator is a linear feedback shift register
(LFSR) as shown in Fig.1. This consists of k& boxes,
representing memory elements, each containing a 0 or
1. At each time unit transition, the contents of the
boxes are shifted one place to the right, and some boxes
are added and fed back to the leftmost box. Namely,
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Figure 1: A linear feedback shift register.
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Figure 2: A nonlinear feedback shift register.

in Fig.1l, if a state of the register is represented by
{ax—1(n),ax—2(n),- --,a1(n),ap(n)} at time n, then the
leftmost box ax_1(n) is updated as

ak_l(fl + 1) = hlak_l(n) + hgak_z(n) + -+ hkao(n),

(1)
where the sum is calculated modulo-2, so @ in the figure
represents a mod-2 adder or exclusive-OR gate. Note
that such a operation (mod-2 addition) is linear in Ga-
lois field GF(2), which is the reason why the term lnear
feedback is used. Such a class of LFSRs can generate
well-known M-sequences, Gold sequences, and Kasami
sequences([1][2].

On the other hand, we consider a nonlinear feed-
back shift register (NFSR) as shown in Fig.2. The non-
linear feedback part can be any combinational logic cir-
cuit. Thus, it can be written by

ag-1(n+1) = fak-1(n),ax-2(n),---,a0(n))  (2)

where f(-) is a nonlinear function in GF(2). We mainly
consider sequences generated by such an NFSR.

3. Maximal-Period Sequences

3.1 Design

In Fig.1, there are 2% possible states for the shift regis-
ter. Thus, the sequence a¢(0),a0(1), ap(2),- -+ must be
periodic. But the zero state {0,0,---,0} cannot occur
unless the sequence is an all-zero sequence. So the max-
imum possible period of such sequences is 2% — 1. It has
been proved that if the polynomial specifying an LFSR,
defined by

h(:l?): howk+h11}k—1+~-~+hk_1l’+hk (3)
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Figure 3: Examples of one-to-one mappings. (k = 4)

is primitive, then the LFSR generates a sequence
ao(0),a0(1),an(2), - - - of period 2¥ — 1 from any nonzero
starting state. Any segment ag(?),ag(¢ +1),---,ao(: +
2% — 2) of length 2¥ — 1 is called a mazimal-length se-
quence or simply an M-sequence.

Now consider methods to generate maximal-period
sequences by NFSRs. Since there are infinite kinds of
combinational logic circuits which can be used as the
nonlinear feedback part, it is impossible to consider all
of them. However, the number of possible states is 2%
which is same as LFSRs. Hence, the number of different
kinds of sequences generated by NFSRs is also finite.
To find such maximal-period sequences, we propose the
following method.

Firstly, a state of the register, denoted by
{ak—1(n), ag-2(n),- - -, ag(n)}, is transformed into a dec-
imal integer z, € [0,2F — 1] as

2n = ao(n) 2571 ay(n)- 2524 4 ap_1(n)-2°. (4)

It is obvious that for any nonlinear function f(-) includ-
ing a linear function in LFSRs, z,41 must satisfy

Tn4l =
2z, or 2z, +1 for z, € [0,2F"1 — 1]
2z, — 2% or 2z, -2 41 for z, € 251 2F —1].

()

Such a mapping &, — Zn4+1 in eq.(5) specifies the non-
linear function f(-). Thus we consider such mappings
for design of maximal-period sequences based on NF-
SRs. Such a mapping is easily obtained by plotting
(2n,Zn4+1). Note that it must be a one-to-one mapping
in order to generate maximal-period sequences. Hence,
from eq.(5), we have the restriction of such plotting that
if z, €[0,2%! — 1] is mapped to 2z, then z, + 25!
must be mapped to 2z, + 1, and ifz,, € [0,2F"1 — 1] is
mapped to 2z, + 1, then z, + 2~ must be mapped to
2x,.

In NFSRs, we can use the zero state {0,0, --,0}
as a part of states in generating maximal-period se-
quences. But, in this paper, we don’t use the zero
state, that is, f(0,0,---,0) = 0. (Simultaneously, this
means f(0,---,0,1) = 1.) Hence, the maximal possi-
ble period is also 2 — 1 which is same as in LFSRs.



Table 1: Total number of sequences and number of
maximal-period sequences generated by NFSRs.

| k | Total No. of Seq. | No. of Mp-seq. (M-seq.) |

3 4 22
4 64 16 (2)
5 16,384 2,048 (6)
6 1,073,741,824 67,108,364 (6)

Examples of such mappings are shown in Fig.3, where
k = 4. Fig.3(a) denotes the mapping for generating
an M-sequence. On the other hand, Fig.3(b) denotes
the mapping for generating a maximal-period sequence
which is different from any M-sequences. We call such
new maximal-period sequences Mp-sequences[7]. As
shown in Fig.3, the shape of one-to-one mappings based
on NFSRs in Fig.2 is similar to the Bernoulli map which
is one of well-known chaotic maps. As pointed out in [8§],
an M-sequence is one of finite-word-length approxima-
tions to the Bernoulli map. Similarly, an Mp-sequence
is also one of finite-word-length approximations to the
Bernoulli map.

One-to-one mappings mentioned above cannot al-
ways generate maximal-period sequences. Thus, we
find the mappings generating maximal-period sequences
by exhaustive search of all possible plotting described
above. For k£ = 3 to 6, the number of maximal-period
sequences including M-sequences is shown in Table 1.
We find that there are numerous kinds of sequences with
maximal period for each k. We can show that the total
number of sequences, ®(k), is given by

B(k) = 2272, (6)

Furthermore, according to our conjecture from Table
1, the number of maximal-period sequences, ¥p(k), is
given by
®(k)
Up(k) = Qk(—l' (N

Once the mapping is selected, we can easily de-
sign the combinational logic circuit realizing the nonlin-
ear feedback part as follows. The mapping determines
all outputs of the function f(-) given by eq.(2) for 2*
kinds of input patterns. Thus we can make the truth
table which represents such an input-output relation.
Therefore, the logic circuit realizing the truth table can
be constructed based on the fundamental combinational
logic circuit design. An example of such design is shown
in Fig.4.

Next we consider another type of NFSRs different
from Fig.2. To do this, we construct one-to-one map-
pings which are similar to the {ent map which is also
one of well-known chaotic maps. An examples of such
mappings is shown in Fig.5. We can also find maximal-
period sequences generated from such tent-type map-
pings by exhaustive search. Such maximal-period se-
quences are called Mr-sequences. Table 2 shows the
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Figure 4: An example of NFSRs for Mp-sequences.
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Figure 5: An example of one-to-one tent-type mappings.
(k’ = 4)

number of maximal-period sequences generated by tent-
type mappings for £ = 3 to 6. We can find that the num-
ber of Mr-sequences is half of that of Mg-sequences for
each k.

Tent-type mappings can be realized by a modified
NFSR shown in Fig.6. Similarly to the Bernoulli map-
ping, we can design logic circuits realizing the nonlinear
feedback part. Figure 7 shows an example of such mod-
ified NFSRs for Mt-sequences.

3.2 Correlation Properties

As is well known, M-sequences generated by LFSRs have
excellent periodic auto-correlation properties. However,
the number of different kinds of M-sequences of same
period is extremely small. On the other hand, as in the
previous subsection, NFSRs can produce a large number
of different kinds of maximal-period sequences, which
1s one of advantages of using NFSRs rather than LF-
SRs. But, their auto-correlation properties deteriorate
compared to M-sequences as reported in [7]. Neverthe-
less, they can produce new families of sequences with
good cross-correlation properties which are comparable
to Gold families as also reported in [7].

3.3 Linear Complexity

The linear complezity or linear span is the length of the
shortest linear recursion over GF(p) such as eq.(1). In
other words, it is the length of the shortest LFSR that
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Table 2: The number of maximal-period sequences gen-
erated by tent-type mappings.

[ k | Total No. of Seq. [ No. of My-seq. |

3 4 1
4 64 8
5 16,384 1,024
6 1,073,741,824 | 33,554,432
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Figure 6: A modified nonlinear feedback shift register.

I output

.S
A %4
[ |
N
S

., (")

could produce the sequence. The linear complexity of a
sequence is one measure of its unpredictability which
is of great interest for cryptographic reason. Hence,
a pseudorandom sequence used in cryptography should
have large linear complexity compared with its period.
If a sequence has linear complexity ¢, then its linear
recursion can be determined from any 2¢ successive el-
ements of the sequence. The remaining elements can
then be produced from the recursion.

It is obvious that the linear complexity of an M-
sequence of period N = 2¥ — 1 is equal to k which is
the minimum value for the period. Thus we can expect
that the linear complexity of NFSR sequences proposed
in this paper will be enhanced. Figure 8 shows exam-
ples of the linear complexity of Mp-sequences of period
N = 31. We can find that their linear complexity is
almost equal to N/2 which is the maximum value for
period N, that is, same as the linear complexity of truly
random sequences. Hence, with respect to the linear
complexity, the proposed NFSR sequences are superior
to LFSR sequences. This is another advantage of using
NFSRs rather than LFSRs.

4. Concluding Remarks

Design methods of nonlinear feedback shift registers
(NFSRs) which can generate maximal-period sequences
have been proposed. In such designs, we consider one-
to-one mappings which specify nonlinear feedback parts
of NFSRs. As a result, it has been shown that we can
generate a large number of maximal-period sequences
by NFSRs. Several examples of such designs has also
been given. Furthermore, we found that the linear com-
plexity of such sequences is equivalent to that of a truly
random sequence.

output
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Figure 7: An example of modified NFSRs for Mt-
sequences.
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Figure 8: Examples of linear complexity of Mp se-
quences. (k =5, N = 31)
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