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An interpolation 1-D kernel with quadratic polynomials
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Abstract: Sampling rate conversion widely used in
subband coding, A/D and D/A transitions etc. is an
important techniques Nyquist filters and the filter banks
have been used for the sampling converter. However,
they need many memories and, whenever the sampling
rate is changed, it is necessary to design filters. So the
objective of this paper is to present a new kernel that is
quick to evaluate and has a good stopband performance.

1.Introduction

Sampling rate conversion widely used in subband
coding [6]. A/D and D/A transitions [5] etc. is an
important techniques. Sampling rate conversion is often
divided into subprocesses: reconstruction and sampling.
The former creates a continuous function from the
discrete signal data and the later samples this to create a
new resampled signal data. Interpolation kernel is the
process of estimating the intermediate values of a
continuous event from discrete samples. In image
processing, reconstruction of a piecewise continuous
function from discrete signal data is often taken to be a
linear combination of the input signal data and
reconstruction kernel. Piecewise local polynomials are
used extensively for reconstruction in signal data
resampling applications because they are simple, quick
to evaluate and easy to implement. However, an enough
amount of the stopband attenuation cannot be achieved
with the previous proposed kernels [1]-[4]. Therefore, it
is unsuitable to applications of the communication signal
processing like data transmission systems.

Sampling rate conversion using the filter banks is
proposed in the field of digital signal processing [7].
However, in sampling rate conversion with a rational
factor, the computational complexity may become very
large.

On the other hand, an ideal reconstruction kernel to
obtain a continuous signal from the discrete signal data is
a sinc function, which is obtained by the Fourier
transform of a rectangular wave. However, since this
kernel has an infinite length polynomials, it cannot be
actually realized. Then, the design method of the nyquist
filter which is approximated the frequency domain
simultaneously with the time domain is needed. The
Nyquist filters have an implementation of large stopband
attenuation. However, they need a lot of amounts of the
calculation for reconstruction in signal data resampling
when a high order filter is used. Moreover, whenever the
sampling rate is changed, it is necessary to design the
Nyquist filter again.
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In this paper, we propose a kernel with linear phase
characteristics using picewise local polynomials. The
proposed kernel is approximated to each piece by any
quadratic functions. The kernel has a good stopband
performance because we are designing the kernel in the
frequency domain. Linear programming technique is
used for the design of the kernel. The kernel obtained is
simple, less memory and easy to implement. Finally, the
usefulness of the proposed kernel is verified through the
examples.

2. Interpolation

Reconstruction of a piecewise continuous function
from discrete data is taken to be a linear combination of
input data and a reconstruction kernel. For unit spaced
samples, this is

fy=Y fyxe—i M

= —oo
where f, are the sample values and y(x) is the
reconstruction kernel.

The proposed kernel with linear phase characteristics
is approximated to each piece by using any quadratic
functions as follows: '
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where N and S are the number of necessary polynomials
for one sampling section and the numbers of sampling -
sections, respectively. Moreover, b, and c,,

s.n° 8.0
are the coefficient of quadratic function. To produce a
useful kernel from this general form, we need to apply
restrictions to eq. (2). Following [5] and [6). the
restrictions are
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D y(x)=y, for x=0

2) Y(X)=Y,,

3) vx)=0 for x=s

4) CO-Continuous.strictions.
We notice from conditions 1) and 3) that the kernel is -
zero intersymbol interference. Morcover. we notice from
conditions 2) that each quadratic function starts and ends
at same points. Substituting the above four restrictions in
eq. (2). we obtain eq.(3).
The rough sketch of this kernel. eq. (3). is shown in Fig.
1.
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Fig. 1 The outline figure of a kernel

Here. although it can also approximate in a time domain
as it is, Sinc function is infinite length and it is
impossible to approximate them all as a matter of fact, as
shown in the upper outline figure, it starts by limited
length, and if approximated as it is, a close error will
arise. Therefore, in order to determine a coefficient by
the method proposed this time, a,, and y , of (3)

s

are optimized in a frequency domain. The frequency
characteristic of eq. (3) is

, 1 1.1
a, {x - Ry(x - F} +V Nx =y (Nx=1)
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where T =—Zand L is a number of evaluation points to

one sampling section. Let the frequency characteristics of
an ideal lowpass filter be

1
D(w) =

0 (stopband )
and let W{(w) and 6 be the desired weighting value

for approximating error at frequency @ and the
maximum allowable approximation error. Accordingly. it
has to satisfy the following set of linear inequalities

—0 W (o)ID(w;)-Y(w)] <6 . (6)
In addition, M is grid points(i =0.1,---..\/ ). To optimize

ssband B,
(passband ) (5)

coefficients a,, and y

y.m v S

of eq. (3). we may use eq.
(6) to formulate the following linear program:
Maximize (-§)
Subject to
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The approximation problem of eq. (7) can be solved by
using the standard linear programming techniques.

3. The example of a design
In this section. to show the proposed kernel effectiveness.
we consider about the following designs.
3.1. Example 1
[Specifications]
N:2,8:5 L:10, roll-off rate:0.25,
passband edge:0.75, stopband edge:1.25,
weight:1.
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Fig. 2 The amplitude characteristics of the proposed
kernel

Fig. 3 The proposed kernel

Fig. 2 and 3 show the frequency characteristics and
the kemel, respectively. In Fig. 2, the sampling rate is
normalized as 1. In Fig. 1, solid line shows the amplitude
characteristics of the proposed kernel and dash line is the
amplitude characteristics Sinc function with L=8, It is
clear from Fig. 2 that the stopband attenuation of Sinc
function is worse than one of the proposed kernel.
Moreover, it is clear that the proposed the kernel is zero
intersymbol interference because it is y(x)=0 when

x is the integer values other than 0 from Fig.3. On the
other hand, it is necessary to design the filter of 50
orders to obtain the amplitude characteristic equal with

the proposed kernel by using the Niquist filter. Therefore,

the proposed kernel has fewer memory compared with
Niquist filter. However, even if the sampling section, S,
is increased. the stopband attenuation of the proposed
kernel (N=2) does not exceed about -40dB.
3.2. Example 2

Here. the design example of increasing N is shown.
[Specifications]

N:3,S5:8, L:9, roll-off rate:0.25,

passband edge: 0.75, stopband edge:1.25.

weight:1
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Fig. 4 The amplitude characteristics of the proposed
kernel
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Fig. 5 The proposed kernel

Fig. 4 and 5 is the frequency characteristics and the
kernel, respectively. The frequency characteristic of Sinc
function is also shown in Fig. 4. It is clear from Figs. 2
and 4 that the stopband attenuation is large by increasing
N. It is clear from Fig.3 as well as example 1 that the
proposed the kernel is zero intersymbol interference
because it is p(x)=0 when x is the integer values

other than 0.
3.3. Example 3

Here, the relation between N and the maximum
stopband attenuation is shown.

[Specifications]

S:12, L:30, roll-off rate:0.25,

passband edge: 0.75, stopband edge:1.25.

weight:1

Fig. 6 shows the relation between N and the maximum
stopband attenuation. It is clear from Fig. 6 that the
maximum stopband attenuation increases when N
increases. However, you note that the amount of the
memory increases when N increases. Therefore. it is
necessary to limit the value of N by the purpose.

3.4. Evaluation as a sampling converter
Here, The effect of the proposed kernel when the
sampling rate changes is shown
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Fig. 6 the relation between N and the maximum
stopband attenuation

We think about specifications the following with the
sampling rate different.
N :2,5:8. roll-off rate:0.25.

passband edge: 0.75. stopband edge:1.25. weight:1
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Fig. 7 The comparison figure of the frequency

characteristic when changing a sampling rate

In Fig. 7, the solid line shows the frequency response
of the kernel when the sampling rate is L=12. In addition,
the dash line and dot line show the frequency response of
the kernel when the sampling rate changes from L=6 into
L=12 and when the sampling rate changes from L=18
into L=12, respectively. However, you note that the
coefficient of the quadratic polynomial at L=8 designed
first is used even if the sampling rate changes from L=8
into L=12. When the sampling rate changes from L=8
into L=12, the coefficient of the quadratic polynomial at
L=8 is used. It is clear Fig. 7 that there is no change in
the frequency response even if the sampling rate is
different from the kernel designed. This means that the
proposed kemel needs not be redesigned even if the
sampling rate changes. That is, the proposed kemel is
robustness to the change in the sampling rate.

4. Conclusion
In this paper. we proposed a kernel with linear phase
characteristics using picewise local polynomials. The

proposed kernel is approximated to each piece by any
quadratic functions. The kernel has a good stopband
performance because we are designing the kernel in the
frequency domain. Linear programming technique is
used for the design of the kernel. The kernel obtained is
simple, less memory and casy to implement. Moreover,
even if the sampling rate changes. the proposed kernel
needs not to redesign the kernel. The usefulness of the
proposed kernel is verified through the examples.
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