Proceedings of ITC-CSCC 2000, Pusan, Korea

Transformation Methodology : From the Farmer Model
To Component Interface Meta Model

Soo-Hyun Park, Sung-Gi Min, Tai-Suk Kim

Faculty of Computer Application Engineering, Dongeui University,
San 4, Kaya-dong, PusanJin-ku, Pusan, 614-714, KOREA
Tel:+82-51-890-1725,1727,1707 Fax:+82-51-890-1704

E-mail: {shp, sgmin, tskim} @hyomin.dongeui.ac.kr

Abstract 4 fundamental tenet of CBD is that a
component has a specification which describes what
that component does, and how it behaves when its
services are used. In general, the implementation may
be written in a different programming language and
execute on a different technology platform, from the
language and platform used by the client program. In
order to implement practically the system that is
designed by the Farmer model, there is need to have
the ISM (Interface Specification Model) which explains
specification about the functions of entities of the
Farmer model, such as, entity node, aspect node and
ILB/OLB. This paper suggests the transformation
methodology from the concepts of the Farmer model to
the mapping notions of the ISM. Also in reality, TMN
agents system which is designed by the Farmer model
is transformed to the ISM system design.

1. Introduction

In most of the models including the object oriented
model[1][2] which has been emerged to escape from
the software crisis, the entity of the real world cannot
be observed in various aspects since it can be described
in the fixed aspect according to the view point of the
model constitutor. The Farmer model{3] that is
proposed in order to overcome this disadvantage
analyzes the entity of the real world in the aspect of the
various points that is not the fixed aspect. After that,
the aspect elements that have completed the analysis
are defined to be the aspect object. The Farmer model
is theoretical model, by which we can analyze the real
world system-entities into several multiple aspects and
design them by using the concept of entity node, aspect
entity node, uniformity entity node, uniformity aspect
entity node and multiplicity abstraction. In order to
implement practically the real world system-entities
designed by the Farmer model to allow components
built using different languages (not so Javabeans[4],
CORBA beans[5][6] unless combined with one of the
others), different tools and compiled with different
compilers, to interoperate through clearly defined
interfaces, there are a great need of the Interface
Specification Model[7 - 13] to show specifications
about functions which the entity objects of the Farmer
model, such as, entity node, aspect entity node and

ILB/OLB[3], carry out. Nowaday, CORBA is the most
important middleware project over undertaken by our
industry. It has been designed to allow intelligent
components to discover each other and interoperate in
an object bus. CORBA also specifies an extensive set of
bus-related services for creating and deleting objects,
accessing them by name, storing them in persistent
stores, externalizing their states, and defining ad hoc
relationships between them. Most common uses of the
word ‘component’ mean an independently deliverable
unit of software that encapsulates its design and
implementation and offers standard interfaces to the
outside, by which it may be composed with other
components to form a larger whole. This paper shows
the transformation methodology from the concepts
defined in the Farmer model to the construction
elements of the Interface Specification Model which is
proposed in the Component Based Development(CBD),
and also explains transformation algorithm.
Furthermore, we can see the real example of
transformation of Telecommunication Management
Network(TMN) agent[14][15] design that is executed
by from the Farmer model to Interface Specification
Meta Model.

2.Component Interface Meta Model

A component is a collection of operations, intended to
be used as a building block when constructing
applications or larger-grained components, that is made
available as an independently delivered software
package. A software component is an independently
deliverable package of reusable software services.

In general, a component has three facets. The first
facet is a specification, which describes the semantics.
This explains what the component does, and how a
client should use it. The second facet is an
implementation design, which describes how an
implementer has chosen to design and construct
software and data stores to meet the intended
specification. The last is an executable which delivers
the component's capability on a designated platform. It
is worth emphasising that not all facets of a component
have to be present to make a component usable. For
example, the builder of a component may be happy to
publish the details of the specification to maximise its

— 545 —

Component X

"

Operation Specification

Lo

Excutable
Implementation Run—time
Internal logic Binary

Figure 1 Three Facets of a Component

reuse, but unwilling to publish his implementation
design which he may regard as his own intellectual
property.

CBD is defined as “the industrialization of the
software development process based on assembly of
prefabricated software components” and CBD is based
on two basic ideas. Firstly, that application
development can be significantly improved if
applications can be quickly assembled from pre-
fabricated software components. Secondly, that an
increasingly large collection of interoperable software
components will be made available to developers in
both general and specialist catalogues.

A fundamental tenet of CBD is that a component has
a specification which describes what that component
does, and how it behaves when its services are used.
Given knowledge solely of the specification, any
potential user, or client, of those services can focus on
his part of the overall solution without concern as to
how those services are actually rendered. The services
will be rendered by some programmer or designer who
provides an implementation for the component,
expressed in terms of code and data which will be
guaranteed to meet the specification. In general, the
implementation may be written in a different
programming language and execute on a different
technology platform, from the language and platform
used by the client program. One component may be
replaced by another in an application, as long as both
implement the same specification. The split between
specification and implementation is the essence of the
term encapsulation. The specification acts as a
firewall between the component provider and its
consumer - restricting the effects of changes on either
side, provided the firewall is left intact.[7][8]

3.Transformation Methodology for the

Definition of COM IDL Interface

In order to implement practically the system that is
designed by the Farmer model, there is need to have the
Interface Specification Model which explains
specification about the functions of entities of the
Farmer model, such as, entity node, aspect node and
ILB/OLB.

This paragraph suggests the transformation
methodology from the concepts of the Farmer model to
the mapping notions of the ISM. Also in reality, TMN
agents system which is designed by the Farmer model
is transformed to the ISM system design.

In order to support aspect nodes of the Farmer model,
the ISM has aspect interface. Especially, aspect
interface catalog keeps specific information of aspect
interfaces. Uniformity entity node of the Farmer model
is transformed into the interface having the same
identity in the interface catalog. In the case of
uniformity aspect entity node of the Farmer model, it is
mapped to the aspect interface having the same identity
in the aspect interface catalog.

Representative entity nodes generated by the
multiplicity abstraction of the Farmer model are
transformed to representative interfaces of the ISM.
ILBs in the Farmer model are mapped to interfaces of
the ISM which support static interface invocation (SII)
and these interfaces set their attribute value,
Type_Of BasicComponent, into “ILB”. In the case of
OLBs of the Farmer model, they are transformed into
interfaces of the ISM which support dynamic interface
invocation(DII) and these interfaces set their attribute
value, Type_Of BasicComponent, into “OLB”.

For mapping from the concepts of the Farmer model
to the notions of the ISM, we take into account several
kinds of considerations as follows in view of the
Farmer model construction elements.

1) Entity node
- Mapping into the interface of the ISM

2) Aspect entity node
- Mapping into the aspect interface of the ISM
- Keep aspect interface catalog
- Maintain AIFR(Aspect IFR) apart from
IFR(Interface Repository)
- Basic attributes of aspect interface
Agent ID
Number_Of Entity
Successor Node_Type
Supported Function
Type_Of Successor_Assocication :
[Decompose, Specialize, Multiplicity]
Serviced_Protocol
Configuration_Of Node

— 546 —

Has_Aspeect
<

<< Interface >>
TMNAgentSystem

Network_ID
Number_Of Apents

0..%

Connectivenass

1

Has_Aspeect

>

Set_NetworklD (in aNetwork_ID)
Remove_NetworkiD (out aNetwork_[D)
Add_Agent (in Agent_ID}

Del_Agent {out Agent_ID)

SetConnect (in aAspect)

DisConnect (out aAspect)

1

Has_Aspeect |V

0..x

<< Aspect Interface >>
Agent_Functions

<< Aspect Interface >>
Agent_Communication_Protocols

0.

Jx

Agent_iD
Number_Of _Entity
Successor_Node_Type
Supported_Function
Type_Of_Succssor_Assocication :

{ Decompose, Specialize, Multipiicity]

Agent_tD
Number_Of_Entity
Type_Of_Succssor_Assocication :

{ Decompose, Specisiize, Muttiplicity }
Serviced_Protocol
Successor_Node_Type

<< Asp

ect Interface >>

Agent_Configuration

Set_Aspect_ID (in aAspect_ID)
Select_Association (out Type_Of_Succssor, Assocication)
is_Type_Of (in Successor_interface)

Add_New_Function (in aFunction)

Delete_Function (in aFunction)

Set_Aspect_ID (in aAspect_ID)

Select_Association (out Type_Of_Succssor_Assocication)
Is_Type_Of (in Successor_Interface)
Add_Protocol_Service (in Protocol_Type)
Delete_Protocol_Service (in Protocol_Type)

Agent_iD
Number_Of_Entity

Type_Of_Succssor_Assocication :
[Decompose, Specialize, Muitiplicity }

Configuration_Of_Node

Successor_Node_Type

Set_Aspect_ID (in aAspect_ID)

Select_Assaciation {out

Type_Of_Succesor_Assocication }

Is_Type_Of (in Successor_interface)

Add_New_Devi

{in aAgent, aDevit

Deleite_Devi

(in aAgent, aDevit

Figure2 Mapping to the ISM from the Farmer Model in the case of TMN Agent Design

- Methods of Aspect interface
Set_Aspect_ID (in aAspect_ID)
- Select_Association
(out Type_Of Succssor_Assocication)
Is_Type_Of (in Successor_Interface)
Add New_Function (in aFunction)
Delete_Function (in aFunction)
Add_Protocol_Service (in Protocol_Type)
Delete_Protocol_Service (in Protocol_Type)
Add New_DeviceElement
(in aAgent, aDeviceElement)
Delete_DeviceElement
(in aAgent, aDeviceElement)

Figure 2 shows this kind of example of aspect
interface and these aspect interfaces are preprocessed
into CORBA IDL as figure 3.

3) Representative entity node generated by the

multiplicity abstraction '

- Mapping into the interface of the ISM. This
interface has the name “representative_NODE_ID”
NODE_ID : ID of Representative entity node

- Basic attributes of interface
Attribute_Of BasicComponents: [ILB, OLB]
Number_ Of BasicComponents
Type_Of Succssor_Assocication :

[Decompose, Specialize, Multiplicity |

- Basic operations of interface

Assign_Attribute_To_BasicComponent
(in BasicComponent)

Is_ComponentType Of (in BasicComponent)
Is_InterfaceType_Of (in Successor_Interface)
Add_BasicComponent_To_MultiplicityLink

(in aComponent)
Delete_BasicComponent_To_MultiplicityLink (in

aComponent)

Select_Association

(out Type_Of Succssor_Assocication)

4)ILB

- Static Interface Invocation

- Mapping into the Interface of the ISM

- Attribute “Type_Of BasicComponent” has “ILB”
value,

5)OLB

- Dynamic Interface Invocation

- Mapping into the Interface of the ISM

- Attribute “Type_Of BasicComponent” has “OLB”
value,

4, Conclusion

In this paper, we have defined CBD as the
industrialization of the software development process
based on assembly of prefabricated software
components. Given knowledge solely of the
specification, any potential user, or client, of those
services can focus on his part of the overall solution
without concern as to how those services are actually
rendered. This paper shows the transformation

// TMN_Agent_Aspects.idl
Module TMN Agent _Aspects {

Aspect Interface Agent Functions {

/

/
Aspect Interface Agent_Configuration {

void Set_Aspect_ID (in string aAspect_ID)
void Select_Association (out any Type_Of Succssor_Assocication)
void Is_Type_Of (in any Successor_Interface)
void Add_New_Function (in any aFunction)
void Delete_Function (in any aFunction)

Aspect Interface Agent_Communiation_Protocols {
void Set_Aspect_ID (in string aAspect_ID)
void Select_Association (out any Type_Of Succssor_Assocication)
void Is_Type_Of (in any Successor_Interface)
void Add_Protocol_Service (in any Protocol_Type)
void Delete_Protocol_Service (in any Protocol_Type)

void Set_Aspect_ID (in string aAspect ID)

void Select_Association (out any Type_Of Succssor_Assocication)

void Is_Type_Of (in any Successor_Interface)

void Add_New_DeviceElement (in any aAgent, in string aDeviceElement)
void Delete_DeviceElement (in any aAgent, in string aDeviceElement)

Figure 3. IDL of TMN_Agent_Aspects

methodology from the concepts defined in the Farmer
model to the construction elements of the Interface
Specification Model which is proposed in the
Component Based Development(CBD), and also
explains transformation algorithm. Furthermore, we can
see the real example of transformation of
Telecommunication Management Network(TMN)
agent design that is executed by from the Farmer model
to Interface Specification Meta Model.

References

{1] James Martin and James J. Odell, "Object Oriented
Software Analysis & Design", Prentice-Hall, 1992
[2] Ivar Jacobson, "Object-Oriented Software
Engineering, A Use Case Driven Approach",
Addison-Wesley,1992

[3] Soo-Hyun Park, Doo-Kwon Baik, "7. Evaluation
of a Methodology for Construction of TMN Agents
in the Aspects of Cost and Performance”, System
Development Methods for Databases, Enterprise
Modeling, and Workflow Management, Kluwer
Academic / Plenum Publishers, pp.109 - 138, Edited
by W.Gregory Wojtkowski, Wita Wojtkowski,
Stanislaw Wrycza, and Joze Zupancic, U.S.A., 2000

[4] David Flanagan, "Java in a Nutshell, A Desktop
Quick Reference for Java Programmers", O'Reilly
& Associates, Inc. 1996

[5] Thomas J.Mowbray and Ron Zahavi, "The

Essential CORBA Systems
Distributed Objects", OMG, 1995

[6] Jon Siegel, "CORBA, Fundamentals and
Programming", OMG, 1996

[7]1 Keith Short, "Component Based Development and
Object Modeling", White Paper, Sterling Software,
1997

[8] The CBDY96 Standard Version 2.1,
Software, 1998

[9] Robert Orfali, Dan Harkey, and Jeri Edwards, The
Essential Distributed Objects, Survival Guide, John
Wiley & Sons, Canada, 1996

[10] ComponentWare Consortium,
"ComponentWare Architecture : A technical product
description ", I-Kinetics, Inc, 1995.

Integration using

Sterling

[11] ComponentWare Consortium, "A technical
product description", I-Kinetics, Inc.,1995
[12] ComponentWare Consortium Technical Plan

Statement of Work, I-Kinetics, Inc.,1995

[13] Desmond F.D’Souza, Alan C.Wills, Objects,
Components, And Frameworks With UML, The
Catalysis Approach, Addison-Wesley, 1998.

[14] ITU-T Recommendation M.3010, "Principles
for a TMN", 1992

[15] Salah Aidarous and Thomas Plevyak, "TMN
into the 2Ist Century, Techniques, Standards,
Technologies and Applications”, IEEE Press, 1994

