Proceedings of ITC-CSCC 2000, Pusan, Korea

Designing of Multi-tier GIS Architecture for Distributed Network Environment

t1YOSHINORI NIE, 11MORIKAZU NAKAMURA
11HAYAO MIYAGI and KENJI ONAGA
tOkinawa Research Center, Telecommunications Advancement Organization
1 Asahi-machi, Naha, Okinawa, 900-0029, Japan
Phone +81-098-862-3986 Fax +81-098-862-3989
E-mail nie@naha.tao.go.jp

{University of the Ryukyus
1 Senbaru, Nishihara, Okinawa, 903-0213, Japan

Abstract: This paper presents a multi-tier GIS ar-
chitecture to adapt to large-scale distributed networks
and to improve data transfer performance with intelli-
gent caching technique. We design this system using
UML based on object-oriented analysis. We show some
advantages in our proposed system against the ordinary
GIS, in special, suitability to distributed networks.

1 Introduction

As Geographical Information Systems (GIS) have been
growing in popularity, the needs for sharing spatial data
in a distributed network computing has become neces-
sary recently [1].

On the other hand, weakness of traditional GISs has
also been highlighted: Most GIS softwares are not good
at sharing spatial data in the distributed network since
ordinary softwares treat the data as a collection of flat
files whose size is relatively large to be transferred.
Besides, because such a file is arranged based on (2-
dimensional) mesh it is difficult to rearrange dynami-
cally contents of a file according to the user’s request.
Therefore, the file-based transfer is not flexible.

Our approach to this problem includes the followings:
(1) Defining the smallest transfer unit called “feature”
which includes the information of the earth point in the
real world. (2) Designing 3 parts of layer: the presen-
tation, function and data layer, which is suitable for
the distributed network environment. (3) Developing a
traffic reduction technique among layers.

Instead of transferring flat files, utilizing feature ob-
ject format allow us to treat spatial data flexibility. In
a prototype of this system, each layer employs the same
cache function, which is specialized and optimized for
geospatial data.

We design this system using UML (Unified Modeling
Language) [3] by object-oriented analysis. The UML
is the industry-standard language for specifying, visu-
alizing, constructing, and documenting the artifacts of
software systems which was led by Rational Software’s
researcher.

Let us now explain our system characteristics.

%rdina!eGeometry p

1

,l Topology p

0.1

Figure 1: Feature Class

2 Feature Model

By referring to the object design of Open Geodata
Model (OGM) proposed by Open GIS Consortium [2],
we define the feature object, which is the fundamental
unit presenting geospatial information. It is composed
of the coordinate geometry object and some properties.
A feature may be defined recursively, this means that it
can be a composite of other features. Figure 1 illustrates
simply the feature architecture.

A geometry expresses the geospatial information and
is represented by a set of Point, Curve, Surface objects.
A Surface is composed of some curve objects and a curve
is constructed by some point objects. Namely, a point
object is the fundamental one of the coordinate geome-
try. Figure 2 illustrates the geometry class and 3 depicts
the coordinate geometry class.

A property is a set of item objects which are composed
of a pair of key and value. In most cases, the key and
value are expressed by character string.

In addition, a feature has the ability to move among
layers through network transparently. This concept pro-
vides us with more flexibility for transfer control of both
queries and size. Moreover, the feature is designed as an

- p—
1 <<interface>>
Sizable IDObject .
! ™ CoordinateGeomeiry
T T E—
+getDimensicn() Intoger

+geIMBR() MBR
+equalsValue(Chiedt) boolean

T

<cinlertace>>

Modifiable
T CoordinaleGeometry

Geometry Geometrylmpl

+getC: y
CecrdinateGeomatry
+getTopeiogyl) Topology

i

<<interface>>

#egC
#opo Topolegy

+copy(CoordinateGeometry)

< Modifiabi _‘I
ModifiableGeometry K..... Geometyimpl [— —
+5aCi <<Interface>>
c L]
+getTopotogy(Topology} 1 Topolagy

+ci Gaomets
ad M +gelType() enum{Type }
+gatCoordinateGeomelry()
CoordinateGaometry
+setCoordinateGeomalry
(CoordinateGeomatry)
~copy(Tepology)

Figure 2: Geometry Class

immutable object in order to process a lot of requests
from connected upper layers. An immutable object is
the object that has no method to change its attribute,
that is, the only chance to set geometry and property
data of the feature is the time to initiate it.

This characteristic seems to be inconvenient, but it
allows us to neglect complicated mechanism for the ob-
ject synchronization when the multiple requests to mod-
ify attributes of an object are taken place in distributed
network environment. Instead of providing methods to
modify feature attribute, we introduce the modifiable
feature object, which can be constructed by the corre-
sponding user’s request.

3 Multi Layer Architecture

Our GIS adopts the multi layer architecture in the base
system. Figure 4 illustrates the component of this sys-
tem.

We provide a simple geospatial data viewer as a pre-
sentation layer’s application. The Feature Transfer Ser-
vice component enables to connect recursively another
Feature Transfer Service. And it has its own DBMan-
ager component. Figure 5 depicts the deployment of
this system.

Each layer’s role is as follows:

Presentation Layer The presentation layer has a role
of communicating with users, that is, displaying
geospatial objects and waiting user’s requests.

Function Layer The function layer, playing roles of
various geospatial processing as the middle layer of
the system, is constructed by connecting recursively
several function sub-layers. Each function layer has
the pointer to the following lower layer and its own
database system. Figure 6 illustrates the function
layer class.

Data Layer The database system generally works as a
cache manager, but when no following layer exists,

<interiace>> <interiace>>
. pca—— |
IDObject Sizable
<<intertace>> <<interiaces>
ZS S Coordi Modif
y (},— Q__
CoordinateGeometry
+getType() enumiTyp> }
+getDimension() nteger +copy(CoomimateGeome
DOmeetrp e Mo copy(Coominate)
sequalsValue(Obpect) boolean
T %
<dnierace>> <<interfaces> <intertaces> <cintertaces>
Point Curve Surface CGCollection
+gett() Floa +geiStanPorri() Paint ageiVertax() List +cortains(CGeom)
+getY () Floal «gelEngPont() P oint +qelArea() Float boalean
«gelLength() Float boolean
+contans(Pownt) boolean +containsAl(Collection) bogiean
+cortansAll(Collection) boolean +1sEmply() boclean
bociesn +tesator() Noraor +Horator() torator
+horator() Neralor +s1z0() Integor +szo) Intager
+size(} Inleger +loAmay() Curvel “toAray()
+loAmay() Poni]l +1sVahd() bootean CoornateGeometry])
UL, T I G N KT s
- | — : — —
i H H
k<irtertacess | + <<intertace>> <<intertaces> <cinlertace>> !
i ' urve ' i face |} GCollection | ¢
Point H H
RLC(t] camd(Curve) bovlean] +asdCGeom) boolean H
1| +removetPout) bootean +remuove(Gurve) boolem +adAllCallecton) boatean | 4
+setX(Fioat) ' +clear() '
ssotY(Floal) | | H H H
Zs oo 2 ———— . 4 g—— 1| sremoveAiCatecton) :
HEE] 1]] boolean H
U [N [N :
ey S T EEL T - e, , -
bt O\ by ~~ e -
-) -t I - !
Pointimp! | Curvelmpl H Surfacelmpl v| CGCollectiontmpt | !
1 v T N
#2 Float B falement List H Soloment List Setorment List H
#yFioat : #rmbr MBR : #aren Float ! #moe MBR '
#mbr MBA i i #mbr MER v H
: ' H
. T it T 1 Girbiten
I H
Modifiable Modifiable Madifi
Pointimpl Curveimpl Surtacelmpl CGCollectionimpl

Figure 3: Coordinate Geometry Class

Presentaton
Layers
Applicaton

Feature
Transter et
Senvice

DBManager

i

Figure 4: Component of the system

this function layer functions as the data layer in
this system. This cache manager stores the feature
object in the cache space to reduce the network
traffic. Figure 7 depicts the data layer class.

The Feature Transfer Service component refers to the
lower layer of another Feature Transfer Service compo-
nent. And, each one has the DBManager component.
Especially, the DBManager component managed by the
Presentation layer and the Function layer works as the
cache system of the feature objects. The layer with no
connection to lower layer of the Feature Transfer Service
component is defined as the Data layer.

When the Feature Transfer Service received the re-
quest message from the user, it querys its own DBMan-
ager to get the requested feature objects. In case of
finding no objects, the request message is sent to the

— 542 —

Laver
Presentalion
Layer's
Application
i
+
Feature
Transter — DBManager
Service
T
Funglion Laver
Feature
Transter — DBManager
Service
T
Data taver
Feature]
Transter — DBMariager
Service

Figure 5: Deployment of the system

<<intertaces>
BasaeSarvice

“timishy)

78

| I

1

<<interface>>
FunctionService

<<interfaca>>
CatalogSarvice

<<interface>>
LocationService

connect{Auth} Aulhey

9. 0

Sting) MBR

Autrey)
+qeiServioaLisl() Strng]

(FettureTransterService)

Z<

A '.I(‘nllndlm

FunctionServicelmpt N
H

SaunTable Sel
BsennceTlassTable Map

CatalogServicalmpt

FroyToService Map
#portManager PotManager
#catalog CatalogServion

Facosss Table Map
#03p [DP ublisher

Stang

) Sinng } Stnng

1

«<interface>>
FeatureTransferService

<<interface>>
FeatureTransterRoutingService

+setlowerLayerUpdateE vertManager.
FostureTransterService)
+9etHastName() Stnng
+g9elGlobaiCode() Ineger
+guiFentureSchoma(D) FeatureScherns
+getFoatureSchemas(iO]) Cotection
+selFestureSchema(FortureSchema)
FoatireSchems
+geiFeature(ID) Fealire
sgeiFeatures(ID[)) Colectron
+gelFestures_Async(ID], unitSize beger.
eaThreadSze Inleger,
hstenst LoactF emturet istencr)
+setFonture(F sature} Feature

Zs

| <dimplements>x
H

FeatureTransferRoutingServiceimpl

#cataiog CatalogServios
#uconssTable Map
#hostname Sinng

+gaServiceName() Strng

shnd(QueryParmneler} FeatureCalecion | <<implements>>
+starUiprimteEvertPublhsher d’ .
hostname Stng) boolenn “"771 FeatureTransterServicelmpi

scheckUpdatedF eature(Map)

Cotlechon

*ctiockLipra eF emiureS chema(Map)
Collechon

+getUpoatecFeaiures(Date) Collecion

Bupped_aver FoatireTransfeSennce
#igtabase DBManager
#hosiname Sinng
BupdateE vortPublisher
UpdateEventPubishar
GheckUpriatedFeature
BuniSize Ineger

+geiSenmcoName{) Stang

Figure 6: The function layer class

<<interlace>> <<|mp|mms>] <<anstracl>>
DBManager q __________________ CacheManager
init(} #oachedObjectSize i
+setStoOutput(bociean) #ndex INode:
+getGlobal Code() int ¥area MBAR
+getFeatureSize{) int #cacheRatio i
+geiF eaturaSchermaSize() int #cacheSize int

+qetF eatureSchema(!D) FeatureSchema
+getF eatureSchemas(ID[) Collection
+setF eatureSchemal FeatureSchema)
rgetFeatureID) Feature

#eacheType in

#ilename Strin
#cacheClearListener Callection
#irner Timer

+getFeatures(iOf) Collection
+setF eature(Feature)
+ind(QueryParameter) FeatureColection
+rgetAreal) MBR
+checkUpdatedFeature(Map) Collection
+checkUpdatedFeatureSchemaMap) Collectior «getCacheType() int

+getUpdatedFeatures(Date} Collection +setCacheType(iny

+frnish() +getFilename() {fiename String}
+setFilename(fiename String)
+addCacheCleanistener(CacheGleant istaner]
+removeCacheCleantistener(CacheCleanListener]
+seaUserView(fioat float)

SDBManager T

+openDatabaseifiename String)
+createDatabase(flename String)

+gatCacheRatio) int
+setCacheRatiofin)
+getCacheSize) int
+seCacheSizein)

T
{ ccimplements>>

+serGlobalCode(int) FeatureCacheManager
+getPoimSize() in

+genCurveSize() int #allPoint Map

+getSurtaceSize() int #allCurve Map
+gelCGCalectionSize() int #aliSurtace Map

#3)ICGCollection Map
#aliFeature Map
#allFeatureSchema Map

Figure 7: The data layer class

1:Calculate the are (latitude and longilude) from the address

Eunction Layer;
becationService

2:G$ Calal Se(vm

within the area

—_—

2.1 :Query all registerd Feature Transter Service

—

Data Laver,
EeatureTransferService

3.3:Request the feature objects 10 the mulliple
FeatureTransterService according to the /

2.2: Query

3.4:Read the l l ihe DBManager

Feature ID feature object

3:Get the feature which is out of the cache Dala Layer:
3.2:Request the feature objects DBManager
ati . y .
1 FeatureTransfer EeatureTranslor
Service RoutingService

1 3.1:Check the cache list

Presentation Layer:
CacheManager

Figure 8: Collaboration of reading feature

lower Feature Transfer Service until the requested fea-
ture is found.

4 Update Services

We equip the feature update service in this system.
When someone (authorized to modify certain fea-
tures) changes some attributes of the feature and pub-
lishes update transaction to this system, the updated
event, of the feature spreads over multi-tier network sys-
tems, and transfer to all presentation layer certainly.
The presentation layer that receives the updated event
can repaint the geospatial data viewer to maintain the
latest information. To realize the above procedure, each
layer has to be ready to receive the update event from
another layer via the network using special utility that
provides server function to the remote machine.
However, from the security point of view, such a
server-side function may be undesirable. Therefore, a
polling type method is also provided. This polling func-
tion accesses the lower layer regularly to check the exis-

— 543 —

X

:Presentation | ayer Presentation: Presentation: Presentation: Fuaction: Function: 08; be: DB:
FeatureTransfer EeatureCache UpdateEvent FeatreTransfer UpdateEvent UpdateEvent FeatureTranster DBManager
. Service Manager Listener BoutingService Router Publisher Setvice
' H s ' v H ' '
L Feature Update data
- . pdate : Fealure Update data : '
Modify request v v 'l 1 s s Feature Update data
to the feature Feature H T ' 4 _'D
™ Update data 1 : : ' * _‘J T
' pd H : . Update event H
H : I I Update event 1 , ‘
' Update event v ’ '
Update event ! H H H H H H
' .

Figure 9: Update event type sequence

X

:Presentation Layer Presentation: Presentation: Presentation:
EeatureTransfer FeatureCache Timer
' Service Manager
——

Presentation: Function: DB: DB:
CheckUpdated FeatureTransfer EeatureTranster DBManager
Feature RoutingService Service

Updated Feature data

s Updated Featur(:e data :

Modify request
to the feature

L Updated [:I.

™ Feature data !

g i Updated Feature data
H ; l I 'I::'

[i}j‘ imer Event |

of '
Check update in S Check update info

Update info!

Update info:

Update info |
‘ H
! !

Figure 10: Polling type sequence

tence of the updated feature.

The polling type refreshes its own cached feature ob-
jects regularly, but it cannot get the new feature object
which is not contained in the cache. Nevertheless, the
update event type can receive any feature objects imme-
diately, but there is a possibility of missing the update
event when a layer is down for some reason or other. By
employing the two methods concurrently for updating,
the reliability is increased.

5 Conclusion

In this paper, we have proposed a network centric
GIS architecture with the object-oriented technology to
share effectively the spatial data in distributed networks.

The proposed system is implemented with Java lan-
guage. Each layer interface is available by the tech-
nology of Java RMI (Remote Method Invocation)[4] in-
cluded in the Java Development Kit (JDK). In Java
RMI, a network transparent object is easily defined by
adding a few steps into the original object definition.
The database including the function layer can store fea-
ture objects as persistent objects with the simple hash
table structure. This approach makes development cost
decreased.

We showed some advantages in our proposed system

against the ordinary GIS, in special, suitability to dis-
tributed networks. The UML diagram helps us to un-
derstand class structure and message sequence clearly.

References

(1] NSDIPA Web Site, http://www.nsdipa.gr.jp/, May.

2000.

[2] OGC Web Site, http://www.opengis.org/, May.
1999.
[3] Object Management Group, "OMG UML Ver 1.3

specification”, http://www.omg.org/, March, 2000.

[4

Sun Microsystems, “The Source for Java Technol-
ogy”, http://www.java.sun.com/, March, 2000.

