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ABSTRACT

This paper deals with the statistical analysis of an au-
tocalibration procedure for the gain and phase imbal-
ances between the in-phase (I) and quadrature (Q)
components in quadrature receivers. In real imple-
mentation, the imbalances of the gain and phase ex-
ist and degrade the performance of the receiver. In
this paper we investigate the statistical characteristic
of the estimates in an on-line imbalance estimation
method for the receiver under the assumption of an
additive white Gaussian noise environment.

1. INTRODUCTION

Quadrature receivers are widely used in communica-
tion and array signal processing. The exact match in
the gain and phase of the I and @ channels of quadra-
ture receivers is very important to achieve its maxi-
mum performance [1]. When the two parameters of
the two channels are exactly matched, it usually be-
comes a classical parameter estimation problem in the
complex random process which belongs to the Good-
man class. However, practical quadrature receivers
can not be ideal so that the receiver has gain and phase
imbalances due to the mismatch. In this case, the clas-
sical signal processing algorithms may not work well.

The error analysis in a coherent detector was
done by Sinsky and Wang [2]. Also, a correction
method and its performance analysis for a coherent
receiver under a noisy circumstance, were introduced
by Churchill et al [3]. However, in their work the pa-
rameters of the testing input signal are assumed to
be known. In this case the on-line calibration of the
receiver is impossible.

The autocalibration algorithm proposed in [1) is
useful even for the case that the parameters of the in-
put signals are unknown, since the relative differences
in the magnitude and phase are only used in their cal-
ibration algorithm.

This paper is organized as follows. In Section
2 the receiver model is introduced. The distribution,
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Figure 1: Quadrature receiver model.

mean, and variance functions of the sampled data out-
puts in the imbalance estimation procedure are de-
rived in Section 3 and Section 4. Then a brief discus-
sion follows in the last section.

2. RECEIVER MODEL

A quadrature receiver is shown in Figure 1. For
a sinusoidal input signal of known carrier frequency
we(rad/sec) and unknown amplitude and phase, the
outputs of the quadrature receiver may be described
as

z(t) = Acos(wit + ) + ng(t) (1)
y(t) = Al +¢)sin(wit +¢ + @) +ny(t)  (2)

where € and ¢ are a relative fractional gain imbalance
and a relative phase imbalance, respectively, and wy; =
we — wo. Additive white Gaussian noises n;(t) and
ny(t) are assumed to have the covariance of °.

The imbalance estimation procedure for the au-
tocalibration can be represented as in Figure 2. The
outputs, € and ¢, denote the estimates of the relative
gain and phase imbalances, respectively.

3. DISTRIBUTION OF THE SAMPLED
DATA OUTPUT, Xx AND Yx

Sampling the output signals of the receiver at a time
(k+1)T where T is an integer multiple of ff, we have
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Figure 2: Imbalance estimation procedure where

I5T) = & [T () at.

a complex Gaussian random variable pair, X3 and Yy,
given by

. (k+1)T .
X = ée”’ + l/ n,(t)e“’“"tdt
T Jer

2

. (e+1)T .

Y = (Lte)iej(t/)ﬂﬁ) + %/ ny(t)e+Jw.'t dt.
kT

2
Therefore, the distributions of X; and Yy are
~ 4 v 9
Xu~oN (5%, %) ©
2
Yy ~CN (Q*‘Tf)ﬁ‘_ejww), E'T.) . (4)

If we get N sample pairs and denote them as X =
(X0, X1, -+ , X~ and ¥ = [Yo, Y1, -+ , YN,
then the probability density functions of X and Y are
given by

N N-1
1x(0) = &5 {— 53 lalh) - m,ml*}
k=0

TV T = 2
fr(y) = —NgaN &P{ "3 [y(k) — my@m)

k=0
where

A A .
_.eztll = (_E+T6)_ea(¢+¢)’ (5)

Ma(k) = My(k) =

for k=0,1,--- ,N — 1. Now, we define the sampled
data using the polar coordinate as follows.

X = X, + jX; = ree’ > (6)
Y =y, + jyi = 1,69, (7)

Then, from the joint densities of the each new random
variable pair, we can have the marginal densities of
each random vectors given by

QN TN

o Tz
f(rx) = 0,21,:] 0 .
T N2 N-1 A
.exp{—a—2 S, +A2/4)} II % (Tazu) ’
k=0 =0

(8)

N 2
109 = (5:) e {—% > a0, - zp)}
N-1p
[e-%‘ + ﬁ%bké(bk)]
k=0
(9)
and
T V-1
ley) =exp {—; PG e>’A2/4)}
VTN T(1 + €)Ary,
S e T o(M52).
(10)
2 g2 N1
1(©y) =exp {—(ﬁf“— 3 sin?(By, — ¥ ¢)}
k=0
I\NN=TE
. (%) II [e"} + \/ﬂcké(ck)}
=0 (11)
where by = —‘/314 cos(f, — ¥), ¢ =
@2%’1& cos(fy, — 1 — ¢), and ®(v) is a cumulative

distribution functlon for N(0, 1).

4. STATISTICS OF THE ESTIMATES: ONE
SAMPLE CASE

We denoted a pair of samples at time &k as r;, and
Ty, in the previous section. Hereafter, we let [X| =
rz, and |Y| = ry, just for the sake of convenience in
notation.

Letting V = |Y|/|X]| and n = (arg(Y) —
arg(X))er = (8y — 0z)2x, V and 5 then become the
values of 1+ € and qAS, respectively. Now, note that, in
the previous section,

A o? (1+eA o?

(12)
Therefore, we have a density function for V given
as [4]

fv(v) = Zexp{ (v2 -li--'l-)(21+€) )}
> AT\ (1 + €)ivt
'§(4a2(1+v2>) + >§;(z'<3’-$’v)

(13)

Thus we easily have the probability density function
of the gain imbalance W from the relation, W =V —1.
This density function is shown in Figure 3.

We now consider the mean and variance of W.
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Figure 3: Density function of W when T = 107 %sec
(solid line), T = 5sec (dashed line), and T = 10sec
(dash-dotted line). A = 1,e = 0.1, and 0 = 1 are
assumed.

The r-th moment of |Y'| given by

E{jY"} = (?)Tﬂr (g +1)

(14)
Cp (T (L4 e2AT
141 2: 3 40_2
where 1 Fy (a; §; £u) is the confluent hypergeometric
function [5].
Thus the first moment is given by
a\/_ £1+e) A2T (1 +¢€)2 AT
E{]Y|} = TS ( B
(1+€)2A2T
L 802
\/_ (1+¢82:A2T (1 + 6)2A2TI1 (1 + 6)2A2T )
2\/_ 40° 802
(15)
Also [6], we have
1 7T _a%r AT
) S tra(D).

Therefore, we obtain

E{W}=G(eT) (1 La +e)2A2T) ((1 + G)WT)

402 802
(1 +€)242T _ ((1+¢€)2A%T
-+ G(G, T) 102 I 802 1,
(17)
where

2 AT
——,—(1+(1+e) ) AL

G(e,T) = 2 I, (802 ) . (18)

Figure 4 shows E{W} with respect to T and SNR.
Note that the mean rapidly approaches the true value
as T gets large. Thus we may conclude that this esti-
mate is asymptotically unbiased. Actually this char-
acteristic can be easily shown analytically since each

of the first and second terms of (17) can be simplified
for large T as

802 1+e¢
first term ~ i1+ AT +— (19)
second term =~ — (20)

using asymptotic expansion.
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Figure 4: Mean of W as a function of T’ when SNR =
10dB(solid line) and SN R = 20dB(dotted line). A =
1 and € = 0.1 are assumed.

The Variance of W can be derived similarly as

Var{W} = [%2 + Qzﬁ{]

'/000 %exp {—022(:1:2 + A2/4)}
.IO(T:‘””) dz — [E{V}.

A numerical calculation of the variance of W, which
is shown in Figure 5, shows the rapid approach of the
variance to zero as T becomes large. Thus, it may be
concluded that this estimate is also consistent.

The density function of 7 is

fo(n) =

27 e—l_:;ﬁT_
+
/0 2

(21)

(22)
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Figure 5: Variance of W as a function of T when
SNR = 10dB(solid line) and SNR = 20dB(dotted
line). A =1 and € = 0.1 are assumed.
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where a =0, — ¢, B=n+6; — ) — ¢, and
2(14)2T . 2
S(B;T):A(1+6)\/Tcosﬂe“A(J) sin 8. (24)
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A numerical example of this function may be
shown as in Figure 6.
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Figure 6: Probability density function of  when T =
10~5sec (horizontal solid line), 7" = 1sec (dashed line),
and T = b5sec (dash-dotted line). ¢ = 0,¢ = w/4
(vertical solid line),A = 1,SNR = 20dB, and € = 0.1
are assumed.

Also, an example of the numerical calculations of
the mean and variance of 5 is shown in Figure 7 and
Figure 8, respectively. We can see that the mean and
variance approach 0.1 and zero, respectively, as T gets
large. This may imply that the estimate of the phase
imbalance is consistent and asymptotically unbiased.

as

Figure 7: Mean of 7 as a function of T when SNR =
10dB (’x’-marked line) and SN R = 20dB (’o’-marked
line). 9 =0,¢ =n/4,A =1, and € = 0.1 are assumed.

5. DISCUSSION

We analyzed the statistical characteristic of the esti-
mates of the magnitude and phase imbalances in an
autocalibration method that can be used in quadra-
ture receivers. From the analytical and numerical re-
sults we may conclude that both are the minimum

+5(6;T)® (i‘l—(l“T)‘/T cos a) db,

Figure 8: Variance of  as a function of T when
SNR = 10dB (’x’-marked line) and SNR = 20dB
('o’-marked line). ¥ =0,¢ = w/4,A =1, and e = 0.1
are assumed.

variance unbiased estimates asymptotically with re-
spect to the variable T. A minimum sampling period
T may be derived to guarantee a certain level of the
required bit error probability for the receiver if the
worst-case SIVR ig given. Also the recommended val-
ues of T' corresponding to each SNR may be listed
in a table to be used as a look-up reference in real
applications.
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