Proceedings of ITC-CSCC 2000, Pusan, Korea

High Throughput Implementation of RLS Algorithm
Using Fewer Processing Elements

Takeo NIKI Rikita YAMADA Kiyoshi NISHIKAWA Hitoshi KIYA

Dept.of Electrical Engineering, Tokyo Metropolitan Univ.
1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, JAPAN

Phone: +81-426-77-2745, Fax: +81-426-77-2756
E-mail: niki@isys.eei.metro-u.ac.jp

Abstract : This paper proposes a method that en-
ables us to implement the recursive least squares (RLS)
algorithm at high throughput rate using fewer pro-
cessing elements (PEs). It is known that the pipeline
processing can provide a high throughput rate. But,
pipelining is effective only when enough number of
PEs are available. The proposed method achieves
high throughput rate using a few PEs. The effec-
tiveness of the proposed method is verified through
simulations on programmable digital signal proces-
sors (in the following, DSP processors).

1. Introduction

It is well known that the RLS algorithm has a faster
rate of convergence than that of the least mean square
(LMS) algorithm. However, it is also known that the
RLS algorithm has some disadvantages over the LMS.
One of the disadvantages is that it requires high com-
putational complexity and therefore, the through-
put rate, a number of processable samples per unit
time, becomes worse. Due to this degradation of the
throughput rate, number of applications where the
RLS algorithm can be used are reduced.

As a method to realize high throughput imple-
mentation, pipeline technique has been investigated
(1, 2,3, 4] GQystolic array architecturel® & 7> 8 and PIP-
KAL8! are well known methods for pipelining the
RLS algorithm. When PEs are available as many
as these methods require, they can provide a high
throughput rate.

Conventional pipelining assume that they can use
enough number of PEs. For this reason, when only
a few PEs are available, they can not improve the
throughput rate. For example, a DSP processor has
usually only a few PEs, so it is hard to improve the
throughput rate on a DSP processor using pipeline
technique.

This paper proposes a method to increase the
throughput rate of the RLS algorithm under a con-
straint that only a few PEs are availablel® 1% 11, The
proposed method has an advantage that it improves
the throughput rate without faster PEs. As a result,
reduction of power dissipation is possible by restrict-
ing the number of PEs. It enables us to cut down
the producing cost due to the use of less expensive
processor.

This paper is organized as the following. We sum-
marize the PIPKAL as a preparation in the next
section, and in section 3, the proposed method is
described. In section 4, we simulate the proposed
method on a DSP processor for verifying the effi-
ciency of the proposed method.

2. Conventional method

In this section, the conventional method (PIPKAL)
is explained and its issue is indicated.

2.1 Preparation
The RLS algorithm is described by the following equa-
tions

P(n — Dx(n)

Kn) = 1+ zT(n)P(n — L)x(n) ()
y(n) = " (m)W(n-1) (2)
e(n) = d(n)-y(n) 3)
P(n) = P(n—-M)-K(@n)zT(n)P(n-1)4)

W(n) = W(n-1)+K(n)eln) (5)

where W (n) is the coefficient vector of the adaptive
filter, K(n) is Kalman gain, and @(n) is the input
vector. Note that, in this paper, vectors are vertical
vectors. d(n) is the desired signal and e(n) is the
error signal.

The RLS algorithm requires multiplication of O(N?)
where N is the number of filter coefficients.

2.2 PIPKAL algorithm

PIPKAL algorithm!® is known as one of the meth-
ods for pipelining the RLS algorithm. PIPKAL can
achieve a high throughput rate when enough amount
of PEs are available for updating M sets of filter co-
efficients in parallel where M shows the number of
pipeline stages. PIPKAL enables us to achieve M
times higher throughput rate as that of the RLS al-
gorithm. PIPKAL algorithm is described as follows:

_ P(n — M)a(n)
K(n) = 1+ zT(n)P(n — M)x(n) ©)
ym) = " (M)W(n- M) (7)
e(n) = d(n)-y(n) (8)

P(n)

P(n—M) - K(n)zT(n)P(n—M) (9)
W(n—-M)+ K(n)e(n) (10)

Note that P, K and W are updated using values
that were updated M times before. The RLS algo-
rithm can be considered as a case of 2M = 1. When
enough PEs are available to update W(n) in parallel,
PIPKAL can achieve a higher throughput rate. Let
us illustrate the case of M = 3 for example.

Figure 1 shows the situation when PIPKAL have
enough PEs. On the other hand, when PIPKAL have
only one PE, the situation appears in Figure 2. In
these figures, a solid line arrow represents updating
coefficients, and a broken line arrow represents an
output.

_ Wot+s)

Wa-3) Wa

_ Wa-2) W(n+l§) _ W(n+4:) _

W(n—l)

o
v ¥

- W(n+2:)

W

output ; :
Y ¥ ¥

Voo ¥V Vo ¥ Vo2 ¥ Yo ¥ Vot ¥ Vors ¥
Vn-5) V-3 V-1 Viotl) Vn+3) Ynts

. :
Y Y Y

Figure 1: Filter coefficients and outputs in case that
Enough PEs are available

Wo-y W Watn Wa+t2)

N

v
Vn+)

output .
v v
Vot

¥
Vn-2) Vo
Figure 2: Filter coefficients and outputs in case that
Only one PE is available

PIPKAL updates M sets of filter coefficients in par-
allel. As Figure 1 indicates W (n — 3), W(n — 2) and
W (n —1) are updated in parallel and independently.
Each coeflicient vecter is updated once per M times.
Since fiter coefficients are updated in parallel, the
output samples y(n — 2),y(n — 1), and y(n) are pro-
duced while W (n) is updated once. Therefore, the
throughput of PIPKAL is M times faster than that
of the RLS algorithm.

When number of available PEs are limited, how-
ever, filter coefficients can not be updated in paral-
lel. Therefore, as Figure 2 indicates, filter coefficients
are updated once each time. Only one output sam-
ple is produced while W(n) is updated once, then
throughput of PIPKAL is the same as that of the
RLS algorithm.

In consequence, when only one or a few number
of PEs are available, the throughput rate can not be
improved since filter coeflicients are not updated in

"~ 407 —

parallel. Furthermore, the number of updating until
filter coefficients convergence is M times as that of
the RLS algorithm.

3.

Here, we describe the proposed method. This method
enables us to improve the throughput of the RLS al-
gorithm when only one or a few PEs are available.

Proposed method

3.1 Outline of the proposed method

The standard RLS algorithm produces one output
per update. Since the amount of computation re-
quired to update is constant, we should use faster
PEs to increase the throughput rate.

The proposed method can achieve high through-
put rate without the need for faster PEs. The pro-
posed method comes from modified PIPKAL (12][13],
Modified PIPKAL is an improved algorithm that en-
ables us to remove the redundancy of PIPKAL. Now,
we can see from the equations(1)-(5) that only equa-
tion (2) is required to produce an output and the
equation (2) is independent of equations (1), (3), (5).
Therefore, while updating coefficients W(n), equa-
tion (2) can be independently computed several time.
As a results, it found that a few outputs can be pro-
duced. For the reasons above, the proposed method
can achieve higher throughput implementation.

3.2 Implementation of the proposed method
Next, we explain the implementation of the proposed
method.

Firstly, we divide the equations(1),(4) and (5) of
the RLS algorithm into L parts. Then, insert the
equation (2) for computation to produce an cutput
independent of updating equation. Include this in-
sert, we should divide the equations under the con-
dition that number of cycles within each part are
equal. An example of the division is shown in Figure
3. Where, Gi,---,GL are number of cycles that is
needed for computing each part i. Consequently, it
can make L pieces of output per one update. There-
fore, we can achieve L times faster throughput rate as
that of the conventional PIPKAL in theory without
changing PEs.

3.3 Example
As an example, we show the case when L = 3. In this
case, equations are grouped as the following three

parts.
epart A i=3n-1)
a(n) = P(n-1x(n) (11)
B(n) = zT(n)a(n)+1 (12)
y(i) = 2T@OW(n-1) (13)
epart B i=3(n-1)+1
e(®) = d@)—y@) (14)

K(n) = Bn) (15)
vn) = T (n)P(n-1) (16)
y(i) = 2T @OW(n-1) (17)

epart C i=3(n-1)+2

'.'n
S

1/ RS pipkaL 1

é(n) K(n)y(n) (18)
P(n) = P(n—1)—6n) (19)
W(n) W(n — 1)+ K(n)e(n) (20)
y(@) = zT(OW(n-1) (21)

Where a(n), 8(n),y(n), and §(n) are temporary val-
ues. Equations (17), (21) are inserted to produce
an output. While filter coefficients are update once,
three output samples will be produced. Therefore,
the throughput rate becomes three times as that of
the RLS algorithm. This example of implementation
with limited processing unit is appeared in Figure 4.

art 1
P G cycle
(i)

part 2 G, cycle
W y(i+ 1)

part L
Gy cycle

y(i+L-1)

Gi= Gy oo =G,

Figure 3: State of dividing in the proposed method

W(n) W(n+1)

part A y(n) pantB y(i+i) pantC y(i+2) part A y(n+l) panB

[o : E o .

output

v
y(i+2) y(n) y(i+1) y(i+2) y(n+l)

Figure 4: Implementation of the proposed method
Though we explained that each parts should have
equal computational complexity. This is a difficult

task in practice. For this reason, slight adjustment
such as inserting NOP will be necessary.

4. Simulation

We simulated the propose method on a DSP proces-
sor for verification of the propose method. Following

) .
g -100 \ Proposeéi RLS
o
-150
200, 05 | s 2
Time [ms]

Figure 5: Rate of convergence of each algorithm (vs
time)

0 . , .
50 F .} —— PIPKAL

= ~~RLS i Proposed RLS
E -100
i

-150 1

200 s . . s

0 20 40 60 80 100

Number of iteration

Figure 6: Rate of convergence of each algorithm (vs
iteration)

section shows the results of this simulation.

4.1 simulation conditions

We used a DSP processor as an environment where
number of available PEs is limited.The target DSP
processor was the TMS320C6701 produced by Texas
Instruments. This DSP processor has two indepen-
dent PEs. Each PEs can connect independent data
path. We used the Code Composer Studio as a simu-
lation tool and instruction cycle time was set as 5ns.
We used a 10 tap low-pass filter as unknown system,
and also used 10 tap adaptive filter. The input sig-
nal was white noise whose mean is zero, variance is
one. Dividing number of PIPKAL and the proposed
method was M = L = 3. Dividing position of pro-
posed method was the same as the example shown in
section 3.3.

4.2 Results

The rate of convergence of the RLS algorithm, PIP-
KAL and the proposed method appear in Figure 5, 6.
Note that there is a deference between Figure 5 and
Figure 6 in terms of horizontal axis. The horizontal
axis is a ’time’ in Figure 5, but in Figure 6, that is a
'number of iteration’.

These figures indicate that the rate of real time
convergence of the proposed method is equal to that
of the RLS algorithm, and the number of output sam-
ples which the proposed method produces is equal to
the that of PIPKAL. On the other hand, the rate of
convergence of PIPKAL is three times slower than
that of the RLS algorithm.

Figure 7 indicates the relation of the maximum
number of cycles that is required to produce an out-
put sample y(n) (we call this number G,z) and
pipeline stages M or divided number L. PIPKAL
can not reduce G, regardless of increase of M, the
proposed method is enable us to reduce G445 by in-
crease of L.

5 . — | | I
000 |
4 :
ol AN PIPKAL
.
; s Proposed RLS
- e
1000 I I
1 . 3
Number of stage M

Figure 7: A number of cycles of conventional and
proposal

Note that there is a difference between PIPKAL
and the proposed method in the case L = 1. PIPKAL
reads a coefficient vecter L times before from data
memory, and write the updated coefficient vecter to
data memory for updating L times after. As a re-
sult, PIPKAL has a large number of cycles than the
proposed method.

Finally, we described the throughput rate of each
algorithm in table 1. This table shows the number of
samples that each algorithm produces per unit time.
Where unit time is defined as the time that the RLS
algorithm produces one hundred samples. This table
indicates that the proposed method has three times
faster throughput rate than the RLS algorithm. On
the other hand, PIPKAL has the lower throughput
rate than the RLS algorithm.

Table 1: Throughput of each algorithm (L = M = 3)

RLS PIPKAL proposed
100 85 276 |

5. Conclusion

This paper proposed the algorithm that enables us
to higher throughput implementation of the RLS al-
gorithm using fewer PEs. The proposed method can
achieve L times higher throughput rate as the RLS

algorithm without growing worse of the rate of con-
vergence. As an example of fewer PEs, we simulated
the proposed method using DSP processors.

Acknowledgment

This work was supported in part by the Japan Soci-
ety for the Promotion of Science under Grand-in-Aid
for Scientific Research 11650389 and by Texas Instru-

ments Japan.
References

[1} J.Thomas,“Pipelined systolic architectures for DLMS
adaptive filtering,” Journal of VLSI Signal Processing,
vol.12, pp.223-246, 1996.

[2

S.C.Douglas, Q.Zhu, and K.F.Smith,“A pipelined archi-
tecture for LMS adaptive FIR filter architecture without
adaptation delay,”IEEE Trans. Signal Processing, vol.46,
pp.775-779, Mar. 1998.

[3] K.Matsubara, K.Nishikawa, and H.Kiya,“Pipelined LMS
adaptive filter using a new lookahead transforma-
tion,”IEEE Trans. Circuits Syst 2, vol.46, no.1, pp.51-55,
1999.

[4] A.Harada, K.Nishikawa, and H.Kiya,“A pipelined ar-
chitecture for normalized LMS adaptive digital fil-
ters,”IEICE Trans. Fundamental, vol.82-A, pp.223-229,
Feb. 1999.

[5] S.Haykin,“Adaptive Filter Theory” ,Englewood Cliffs,NJ
07632: Prentice Hall,2nd ed.,1991.

[6] K.J.Raghumath and K.K.parhi,“Pipelined RLS adaptive
filtering using scaled tangent rotations(STAR),”IEEE
Trans. Signal Processing, vol.44, pp.2591-2604, Oct.
1996.

[7] K.J.Raghumath and K.K.Parhi,“Finiteprecision error
analysis of QRD-RLS nad STAR-RLS adaptive fil-
ters,”IEEE Trans. Signal Processing, vol.45, pp.1193-
1209, May. 1997.

{8] Naresh R.Shanbhag,Keshab K.Parhi,“Pipelined Adap-
tive Digital Filters”, Chapter 8, Kluwer Academic Pub-
lishers, 1994.

[9] Kiyoshi Nisikawa,Hitoshi Kiya,”Fast Implementation
Technique for improving throughput of RLS Adaptive
{ilters”, ICASSP-2000 (Istanbul), Jun. 2000.

[10] Kiyoshi Nisikawa,Hitoshi Kiya,”Fast Implementation
Technique for Improving Throughput of RLS Adaptive
Filters”, IEICE trans. Fundamentals, Aug. 2000.

[11] Kiyoshi Nisikawa,Hitoshi Kiya,”Novel Implementation
Technique of RLS Algorithm for Improving Throughput
of Adaptive Filters”, EUSIPCO-2000 (Tampere), Sep.
2000.

[12

Kiyoshi Nishikawa,Hitoshi Kiya,“Low Computational
Complexity Implementation of Pipelined RLS adaptive
filters”, ECCTD ’99, Volume2, pp.1399.

[13] Takeo Niki, Kiyoshi Nishikawa, Hitoshi Kiya,“Low Com-
putational Complexity Implementation of Pipelined RLS
Filters”, IEICE General Conference, A-4-62, Mar. 1999.

