Proceedings of ITC-CSCC 2000, Pusan, Korea

Synthesis for Testability by Adding Transitions of Undefined States
to State Transition Tables

Hiroyuki Yotsuyanagi,

Masaki Hashizume,

Takeomi Tamesada

Dept. of Electrical and Electronic Engineering, The Univ. of Tokushima
2-1 Minami-Josanjima, Tokushima 770-8506 Japan

Tel: +81-88-656-9183,

Fax: +81-88-656-9183

E-mail: {yanagi4, tume, tamesada}@ee.tokushima-u.ac.jp

Abstract: In this paper we propose procedures to
enhance testability by modifying state transition tables. In
these procedures, transitions about undefined states, which
are not described in state transition tables but exist in a
synthesized gate level circuit, are added to a state transition
table. Experimental results for MCNC benchmarks are
shown.

1.Introduction

Test generation for sequential circuits is more difficult than
that for combinational circuits since not only output
function but also state transition must be considered for
sequential circuits. Several methods to design easily
testable circuits have been proposed. Some methods
modify circuits after gate level circuit is obtained such as
scan design. Some other methods have been proposed to
enhance testability during logic synthesis. Such methods
are called synthesis for testability. We introduce new
method to enhance testability by adding transitions of
undefined states in state transition tables.

We propose two procedures in this paper. One is to
make undefined states distinguishable from the defined
states. The other is to make undefined states reachable
from the defined states.

In test generation for sequential circuits, to detect a
fault, it is necessary to find an input sequence that can
distinguish the faulty circuit from the fault free circuit by
observing the output sequence starting from any state.
When undefined states are not used during the normal
operation of a circuit, we can identify the faulty circuit if
after the initialization it produces the output sequence that
is obtained only when the circuit starts from an undefined
state. We propose a procedure to make undefined states
distinguishable from the defined states.

The existence of unreachable states is one of the
causes that makes test generation for sequential circuits
difficult. We have shown many unreachable states exist
especially in large sequential circuits[1]. We have also
proposed the procedure to remove redundancy based on
unreachable states and have shown that many redundancies
of circuits due to unreachable states exist in sequential
circuits[2]. In [3], it has been pointed out that the existence
of many unreachable states degrades the testability of a
circuit. We propose another procedure to avoid making
undefined states unreachable.

This paper is organized as follows. In Section 2, the
definitions of defined states and undefined states are shown.
In Section 3, we show the main idea of our two procedures,
and the details of the procedures are given in Section 4.

Section 5 shows the experimental results for benchmarks
and Section 6 concludes the paper.

2. Definitions

Sequential circuit M, can be described by 5-tuple:
Mc=Xe Qo Zes 8c, Ad)
where
X denotes a set of input vectors,
Q. denotes a set of states,
Z. denotes a set of output vectors,
8¢ : X X Oc — Q. denotes the next state function,

A Xo X Oc = Z denotes the output function.

In this paper, we modify sequential circuits described
in state transition table such as shown in Table 1. Each
transition 7, in a state transition table can be described by
4-tuple

Ti = (Ii’ PSi’ NSb Oi)a
where

I, € I denotes an input vector,

PS; € O denotes a present state,
NS; = 841, PS) and O = AL, PS)) denotes the next

state and the output vevtor obtained by applying I; to the
circuit when its state is PS), respectively.

Table 1. An example of a state transition table

NS/0O
PS - I=0 =1
sQ s2 /00 s2 /00
sl s0/01 s2/01
s2 s0/10 sl/11

If n states are given in a state transition table, & =
[log, n1 bits are needed to encode these states. Therefore, a

gate level circuit obtained by logic synthesis has 2* states.
The state transitions about 2° - n states are not described in
the original state transition table. In this paper, we define
defined state and undefined state as follows.

Definition 1: A state is said to be a defined state if it is
described in a state transition table.

Definition 2: A state is said to be an undefined state if it is
not described in a state transition table but exists in a
synthesized gate-level circuit.

We assume that one binary code is assigned for each
defined state. In this case, the number of undefined states is
(2* - n). For example, in Table 1 three states (s0, s, and s2)
are described. Since at least two bits are needed for

— 355 —

encoding these states, the number of undefined states is (2°
- 3) = 1. Many undefined states may exist for larger
circuits.

3. Adding Transitions of Undefined States

3.1 A method to distinguish undefined states from the
defined states

In general, logic synthesis tools assign state transition and
output of the undefined states in order to achieve minimum
circuit size or minimum delay of the circuit.

Undefined states do not appear during the normal
operation of the synthesized circuit. However they may
appear when a fault exists in a circuit.

To detect a fault, we must find an input sequence
that makes the difference between the output sequence of
the fault free circuit and that of the faulty circuit. However,
if the output sequence starting from an undefined state is
the same as the output sequence starting from some of the
defined states, then the faulty circuit may not be
distinguished from the fault free circuit. Since test
generation for such faults is failed, it is desirable that
undefined states can be distinguished from the other states.

We propose the procedure to modify state transition
tables by adding new transitions about undefined states to a
given state transition table in order that undefined states
can be distinguished from defined states.

Figure 1 shows an example of transitions added by
our procedure 1. This state transition graph includes all
state transitions described in Table 1. State s0, s1 and s2
are defined states. Since two bits are required to encode
these states, the gate level circuit obtained by logic
synthesis has four states. We can add transitions about one
state, denoted by s, in the figure, without changing the
function.

defined states

Figure 1. An example of the state transition
modified by Procedure 1.

First we find the defined state S; that has most
incoming transitions. We add the transitions from
undefined states to only this selected state in order to avoid
making the circuit uninitializable. In this example, we set
Sy be state s2 that has two incoming edges. Next, we select
the input vector and the output vector that are unused or
most rarely used in the transitions into the selected defined
state. In this example, we select input 0 and output 01. And

then the transition is added in order that the selected input
vector brings the circuit from the undefined state into the
defined state and outputs the selected output vector. In this
example, transition (0, sy, s2, 11) is added. The transitions
for the other input vectors are also added to bring the
circuit from sy to s;; as shown in Figure 1.

The undefined states can be distinguished from the
defined states in the state transitions modified by this
procedure. The detail of this procedure is described in
Section 4.

3.2 A method to avoid making undefined states
unreachable

We propose another procedure to modify state transition
tables to reduce the number of unreachable states. An
unreachable state is a state that has no incoming transitions.

It has been known that many unreachable states exist
for large sequential circuits[l]. This is because logic
synthesis tools tend to make undefined states unreachable.
However, it has been reported that existence of many
unreachable states causes test generation difficult[3]. Since
there exist no input sequences to bring a state of a circuit to
an unreachable state, test generation always fails for the
faults that require setting the state of the circuit to an
unreachable state.

To avoid making undefined states unreachable, we
change some transitions between two defined states and
make undefined state reachable from the defined states.

Figure 2 shows an example to describe the procedure.
This state transition graph is also derived from Table 1. The
transitions of undefined state s, are determined as follows.

defined states

-/00

Figure 2. An example of the state transition
modified by Procedure 2.

First, we find the defined state S; that has most
incoming transitions. Next, we find another defined state
Si; that has most outgoing transitions among the states that
has a transition from state S;. In this example, we set S; =
s2 and S, = s0. And then the transition from S; to S; is
replaced by the transition from Sy to an undefined state. We
determined S;, as the state with many incoming transitions
to avoid that the replacement of the transition makes the
defined state unreachable.

The transitions from the undefined state are added by
duplicating the outgoing transitions of S,. This is
necessary to keep the original function.

— 356 —

The undefined states are not unreachable in the state
transitions modified by this procedure. The detail of this
procedure is described in Section 4.

4. Procedures

In this section, we propose two procedures to add
transitions to a state table. Procedure 1 adds transitions
only from undefined states in order to make the difference
between the output sequences starting from an undefined
state and the output sequences starting from a defined state.
Procedure 2 modifies some transitions in the defined state
tables without changing its function in order to avoid
making undefined states unreachable.

We assume that the input vectors and the output
vectors are described in binary codes and state assignment
for defined states in a given state transition table is
obtained.

4.1 Procedure 1
In Procedure 1, transitions from undefined state are added
to distinguish undefined states from the defined states.

[Procedure 1]

Step 1)Find binary codes unused in the given state
transition table

Step 2) Count the number of incoming transitions for each
state

Step 3)Set S; be the state that has most incoming
transitions

Step 4) Enumerate the input vectors and the output vectors
used in the transitions to Sy

Step 5) Set I, be the input vector that is unused or most
rarely used in the transitions to Sy

Step 6) Set O be the output vector that is unused or most
rarely used in the transitions to S

Step 7) For each undefined state (unused binary code) S,
add the following two types of transitions:
the transition from S, to Si (Zz, Sy, Sk, Op) and the
transitions (I, S, Sz, Og) for I ¢ I

In Step 2, we do not count the number of self loops
since the state with most incoming transitions from the
other states is likely to be a reset state.

4.1 Procedure 2:

In Procedure 2, one of the transitions between two defined
states is changed to the transition from the defined state to
an undefined state to avoid making undefined state
unreachable. The transitions from the undefined state are
also added to keep the original function.

[Procedure 2]

Step 1)Find binary codes unused in the given state
transition table

Step 2) Select one of the undefined state (unused binary
code) S,

Step 3) Count the number of incoming transitions for each
state, and set Sy be the state that has most incoming
transitions

Step 4) Count the number of incoming transitions for each
state that has incoming transitions from S,

Step 5) Set Si; be the state with most incoming transitions
among the states that has incoming transitions from
Sk

Step 6) Replace one of the transition from S to Sz, T, = ([,
S, Srz» 0,), with the transition from Sz to S, T,' = (J,,
Sw Sy O,)

Step 7) Add the transitions from Sy to Sg,, T, = (L, Sy, S,
0,), that is determined from each transitions from S;,,
Ta = (Iw SRZ’ Sa’ Oa)

Step 8) If an undefined state remains unprocessed, goto 2.

In Step 3 and 4, we do not count the self loops to
avoid the defined state become unreachable from the other
states by setting the state with many self loops be S,.

5. Experimental Results

We apply the procedures to MCNC benchmarks using the
following steps.

[Overall Procedure]

Step 1) Apply state assignment program jedi, which is
included in logic synthesis system SIS[4], to each
state transition table

Step 2) Apply Procedure 1 or 2 to the obtained state table
with state code

Step 3) Apply logic synthesis to the modified state table
using SIS[4]

Step 4) Apply sequential ATPG tool HITEC[S] to the
synthesized circuit

Table 2 shows the statistics of the original MCNC
benchmarks. The column input and output show the
number of inputs and outputs, respectively. The column
transition shows the number of transitions described in the
state transition table. The column defined state shows the
number of states given in the state transition table. The
column undefined state shows the number of undefined
states given by 224 - 4 where d is the number of the

defined states. Some benchmarks are removed from the
table since they has 2" states or the application of the logic
synthesis failed.

Table 3 shows the experimental results. We estimate
the effectiveness of the procedures by stuck-at fault
coverage and fault efficiency of the test generation. The
column fault shows the number of total stuck-at faults in
the gate level circuits obtained by logic synthesis. The fault
efficiency and the fault coverage obtained by HITEC are
shown in the table. The column Orig shows the results
obtained for the circuits synthesized from the original
benchmark. The columns Procl and Proc2 are the results
obtained for the circuits synthesized from the modified
state transition tables by Procedure 1 and by Procedure 2,
respectively.

The number shown by the italics mean that higher
coverage or efficiency is obtained for the modified circuits
than for the original benchmarks. For the circuits with high
fault coverage, the application of our procedure causes the
lower fault coverage than that of the original circuits. One

— 357 —

of the explanations is that the additional transitions make a
circuit larger and hence the modified circuit is hard to test.
However, for the circuits with lower fault coverage such as
bbara and dk14, fault coverage was increased by our
procedure.

6. Conclusion

We presented two procedures to add transitions of
undefined states to state transition tables to enhance
testability. One is the procedure that adds the transitions
from undefined states to the defined state. Another is the
procedure that changes one of the transitions between
defined states to avoid making undefined states
unreachable.

As shown in the experimental results, for some of the

Complexity Analysis of Sequential ATPG," IEEE Trans.
CAD, vol. 15, no. 11, pp. 1409-1423, Nov. 1996.

[4]E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. Sangiovanni-Vincentelli, "SIS: A
System for Sequential Circuit Synthesis," Electronics
Reserch Laboratory Memorandum No. UCB/ERL
M92/41, 1992.

[5]T. M. Niermann and J. H. Patel, "HITEC: A Test
Generation Package for Sequential Circuits," Proc.
of European Design Automation Conference, pp.
132-135, May 1994.

Table 2. MCNC benchmarks

benchmarks we could obtain higher fault coverage. Our defined | undefined
procedure is simple enough to apply to large circuits and circuit | input output transition state state
can enhance fault coverage for the circuits for which the bbara 4 2 60 10 6
fault coverage is low. However for the circuits with high bbtas 2 2 24 6 2
fault coverage, our procedure decreases the fault coverage beecount | 3 4 28 7 1
then is not effective. This is because the selection of the dk14 3 5 56 7 1
transition from the undefined state is not appropriate. To dkl6 2 3 108 27 5
find better selection of these transitions is still left as a dk27 1 2 14 7 1
future work. dks12 1 3 30 15 1
ex1 9 19 138 20 12
References keyb 7 2 170 19 13
{11H. Yotsuyanagi and K. Kinoshita, “Finding S;OS 181 g ig; 2(; }i
Unreachable States of Sequential Circuits," Technology > !
Reports of the Osaka University, vol. 49, no. 2344, pp. s27 4 1 34 6 2
49-55, Apr. 1999. $386 77 64 13 3
[2]H. Yotsuyanagi and K. Kinoshita, "Undetectable Fault 5420 19 2 137 18 14
Removal of Sequential Circuits Based on Unreachable s820 18 19 232 25 7
States,” Proc. 16th VLSI Test Symp., pp. 176-181, Apr. s832 18 19 245 25 7
1998.
[3]T. E. Marchok, A. El-Maleh, W. Maly, and J. Rajski, "A
Table 3. The experimental results for benchmarks
fault efficiency coverage
circuit Orig Procl Proc2 | Orig Procl Proc2 | Orig Procl Proc2
bbara 136 165 199 0.809 0849 0.663f 0.052 0.709 0.015
bbtas 61 72 85| 0.885 0889 0.918] 0.033 0.014 0.035
beecount 94 121 106/ 1.000 1.000 1.000] 1.000 0926 0.991
dk14 185 202 2021 1.000 1.000 1.000f 0.022 0.901 0.040
dkl6 451 479 528 1.000 0.789 1.000 0.000 0.000 0.000
dk27 61 74 75(1.000 1.000 1.000f 0.000 0.000 0.000
dk512 127 131 1231 1.000 1.000 1.000{ 0.000 0.000 0.000
exl 484 498 565 1.000 1.000 0.752} 0.060 0.070 0.062
keyb 381 406 482) 0987 0998 0.994] 0.958 0941 0.927
sl 296 347 345 1.000 1.000 1.000] 0.014 0.006 0.006
5208 206 226 245, 1.000 1.000 1.000{f 0927 0.898 0918
s27 37 51 59 1.000 1.000 1.000 0919 0.843 0.881
s386 228 260 265] 1.000 1.000 1.000;] 0.952 0.069 0.049
5420 191 217 265/ 1.000 1.000 1.000] 0.833 0.788 0.834
$820 573 597 594 0993 1.000 1.000] 0962 0965 0.966
s832 580 633 629 0998 1.000 1.000 0986 0.984 0.979

— 358 —

