Proceedings of ITC-CSCC 2000, Pusan, Korea

Area Efficient Implementation Of 128-Bit Block Cipher, SEED

Young-Ho Seo, Jong-Hyeon Kim, Yong-Jin Jung and Dong-Wook Kim
Dept. of Electronic Materials Engineering, Kwangwoon University
447-1 Wolgye-Dong Nowon-Gu Seoul 139-050, Korea
Tel:+82-02-940-5167, Fax:+82-02-919-3940
E-mail:axl@explore.kwangwoon.ac.kr

Abstract:This paper presented a FPGA design of
SEED, which is the Korea standard 128-bit block cipher.
In this work, SEED was designed technology-
independently for other applications such as ASIC or
core-based designs. Hence in case of changing the target
of design, it is not necessary to modify design or need
only minor modification to reuse the design. Since SEED
algorithm requires a lot of hardware resources, each unit
was designed only once and used sequentially. So, the
number of gates was minimized and SEED algorithm
was fitted in FPGA without additional components. It
was confirmed that the rate of resource usage is about
80% in ALTERA 10KE and the SEED design operates in
a clock frequency of 131.57 MHz and an encryption rate
of 29 Mbps.

1. Introduction

A lot of ciphers such as DES[1], FEAL[2], LOKI[3],
SAFER[4], and IDEA[5] have been developed to
guarantee confidentiality at electronic commerce using
Internet. Also some algorithms were proposed for
international standard and have been used in many fields.

Korean government had recognized an importance of
cipher systems. So, SEED[6] was developed and
proposed for a standard in Korea. In the future SEED
with other ciphers will be applied to many commercial
applications.

Ciphering algorithms are easily implemented in
software. Typically software cryptosystems rapidly
manage small size of data. But when many users
simultaneously require data access to a cryptosystem,
real-time data access is impossible because of system
overload. Also if cryptosystems are software, the
problem in vulnerability occurs such as trap-door and
hacking. Thus cipher algorithm must map into hardware
for higher throughput and security.

Since components such as S-box that have a large
number of gates are used for each round, it may be
impossible that the design fits in FPGA. Therefore in this
paper SEED algorithm is designed to have a special
structure to reduce the number of gates to successfully
map into a FPGA without supplementary factors

2. SEED Cipher Algorithm

2.1 Global Structure

Korea block cipher SEED has Feistel structure with 16
rounds and the input block size of plain text is 128-bit.
Also the block size of cipher key is 128-bit. The input,

received 128-bit is separated into two 64-bit blocks.
Encryption is performed through round keys extracted by
cipher key and F-function. After 16 rounds, the final
cipher text is created. The global structure of SEED is
shown in Fig. 1.

* R,
¥ e —{ %]
7 LI

- K 3
@ LF —]
— e o =

Ry |
Fig. 1. Global structure of block cipher SEED

2.2 F-Function

As shown in Fig. 2, F-function of SEED is 64-bit
Feistel structure and is an essential factor which
characterizes a block cipher. F-function consists of
XORs, G-functions, and Add/Modulo-232 modules.

Fig. 2. Structure of F-function

2.3 G-Function

G-function is used in both F-function and round key
generation. A 32-bit input is separated into four 8-bit
blocks. Each separated block passes through S-box and
executes bit-wise AND operation with values from my to
ms. As a result, Input block of 32-bit in G-function is
expanded to 128-bit block. Expanded block performs
XOR operation with each other to form output block of
32-bit. G-function is shown in Fig. 3.

— 339 —

Fig. 3. Structure of G-function

2.4 Round Key Generation

128-bit cipher key is separated into left/right two 64-bit
blocks and the separated blocks perform rotate-left shift
in turn. After add/modulo and G-function operations, the
round keys are generated. The process for round key is
shown in Fig. 4.

TA ¢ ¢ o] kg
S e,

[_—\
L ,'l F >+ G ,L’ K“

T aAB | | K“C
= o

? S L Gl Ky,
;_;"} _\"%_":?"_"[6"" Ko
ST
! : r<<8]

Fig. 4. Structure of Round Key Generation

3. Hardware Design

SEED requires large hardware resource due to
characteristics of algorithm. During 16 rounds, 16 F-
functions, 80 G-functions, and 160 S-boxes are used. So,
SEED cipher algorithm must be designed into optimized
hardware. All modules were designed at RT-level and
were connected at structure-level. Since each module is
repeatedly used, multiplexes and registers are used to
deal with data feedback.

3.1 SEED Global Block Design

As shown in Fig. 5, global block of SEED is
composed with Key Generator, F-function, Round Key
Register, Controller and Round process part. SEED has
block size of 128-bit primary input/output. But in
consideration of interface with other systems, primary
input/output is designed to 32-bit in block sizes and
block size of 64-bit for internal data movement. Each
module in data path is controlled by a control block,
which consists of three finite state machines. Global
operation sequence controlled by controller is depicted in
Fig. 6. Round keys are generated during round key
generation sequence and the resulting round keys are

stored at Round Key Register in F-function block.
During cipher text generation, the stored round keys are
used in F-function operational sequence. After 16 round
operations, 128-bit cipher text is created. Then new
round key is generated by new cipher key or the cipher
text is generated by next plain text.

——‘ [—vaz— Input/Output

In/OutData
: ey P Process
i | ! b - Round
i Controller |M MUX
| GFsM)
—f—: | Round
i ; : ! Key Gt?nermor | Register —’M
{ Encoder | | 3 l :
q l a2 Round Key F-Functi [
H 64 -Function :
[) l Register i J:
| N H 64 I
Control Signal
{ Round XOR
\ |

Fig. 5. Global block diagram of SEED

| Cipher Key (128bits) Round Key Round Key
7"l Load (orSkip) _ | Geneation (or Skip) | Store (or Skip) ||
h— Round Key Generation Sequence

[

Clpher Text Generation Sequence4>

16 Round Clphenng Plain Text
Operation (128bits) Load
eep SRS

]

Cipher Text
(128bits) Read

a

i Round Key
(64bits) Load

Round
Operation

F-Function

Operation - - 15 repeat - >I

+——i Round Operation Sequence—»| i
Fig. 6. Hardware operational sequence of SEED

3.2 Key Generation Block Design

Fig. 7 illustrates Key Generation block except G-
function which is in F-function. Since round key is
repeatedly generated by one structure, only one block is
designed for one process of round key generation and is
sequentially used. When two 32-bit data and the round
key constants are added or subtracted, carry save adder
and carry-look-ahead adder are used.

64bit Key input0 64bit Key inputl

" b
N MUX / \MUX /
' Rl%g | Rzg :| ‘ Rgg] R?E }
by

Mux
‘ =
Shift .
[,, Operation __ LA_d{/_S_"b Opf_'f‘ffj

Output
MUX Operahon
_Constants
sequential round key

output (except G-Func)

Fig. 7 Structure of Round Key Generation block diagram

— 340 —

3.3 F-Function Block Design

F-function consists of G-function, S-box and adder,
which occupy large hardware area and are repeatedly
used. Hence each unit is designed only once and
hardware blocks are connected by means of data
feedback structure and each module is sequentially
operated. Add/Modulo-2*? unit consists of a carry-look-
ahead adder. During round key generation, internal G-
function in F-function is used and round key is stored in
Round Key Register in F-function. F-function block is
depicted in Fig. 8.

64bit F-Function Inpuy(C+D)

Round Key Bit-wise
3 Register 4 XOR
— L
$
Ty g, W
SR v %y
MUX MUX
et
a2 32
{ C Register J LD Register J
B
32-
I ' v 7
MUX MUX
2 b
. Add/Modulo
k G-Function 232 OpcralionJ
——32 —
37
Y
b C Register J { D Register
T T
a2 32
v v
c D

Fig. 8. Structure of F-function block diagram

3.4 G-Function Block Design

G-function is composed with register, S-box1/S-box2,
Mask and XOR. Register receives input data of 32-bit
block and extracts 16-bit data twice. So S-box1 and S-
box2 are sequentially used. 16-bit data passed through S-
box is expanded into 64-bit in Mask block. Two 64-bit
data are reduced to one 32-bit block by Sequential
Exclusive-OR operation. The structure of G-function is
illustrated in Fig. 9.

32 bit G-Function Input

8 8

8
8

éequential
Excluive-OR

mlw

32 bit G-Function Output
Fig. 9. Structure of G-function block diagram

3.5 Controller Design

Control part provides control signals to data path
blocks to achieve the operation of SEED algorithm. As
shown in Fig. 10, the controller consists of three FSM,
one for round, one for Key Generation/ F-function, and
one for G-function. The Controller is operated by signals
of clock, reset, key_gen, and data_act. And conditions of
data path operation are represented by signals of

key ready and data_ready. G-function is operated in both
F-function and Key Generation. So the FSM controlling
G-function is controlled by the one creating control
signals for F-function and Key Generation. The FSM for
F-function and Key Generation is controlled by the one
for round process. Round FSM decides total operational
order. Round FSM activated by key gen signal drives the
FSM for Key Generation(F-function). According to
operational sequence, the FSM for Key Generation
drives the one for G-function. So round key is generated
and is stored at round key register in F-function. Also
data_act signal drives the FSM for F-function(Key
Generation). The FSM for F-function creates both
control signal for F-function block and activation signal
of the one for G-function. Then cipher text is obtained
and stored output register in I/O Process block.

Fig. 10. Structure of Controller FSM

3.6 1/0 Process Design

The block size of Input/Output of SEED is 128-bit, but
it may be modified to interface external systems. Hence
Input/Output process block is separately designed as
shown in Fig. 11. In this paper, plain text, cipher key and
cipher text use 32-bit bi-directional ports. Also I/O Data
Process block is designed to change easily into other
structures with input and output of 8, 16, 64 or 128-bit.

Cipher Text | | InoutData e Inout
Store Register ‘— Process Data
= Cipher
L Input Da‘xta ‘|1zs+ Key/Plain Data Path
Store Register Text | inSEED
128 Cipher Text

Fig. 11. Structure of I/O Data Process block diagram

4. Results

In the paper, SEED was designed and mapped in
FPGA without additional hardware and software. All
modules are designed using a design methodology with
VHDL top-down design to allow technology-
independent design and only IEEE standard library is
used. Each unit is designed by RTL description and is
connected by structure-level description.

Fig. 12 and Fig. 13 show the operation during one
whole encryption sequence and control signals,
respectively. Fig. 14 and Fig. 15 illustrate 128-bit input
of cipher key and plain text respectively. Finally 128-bit
block of cipher text is shown in Fig. 16. The result value
of cipher text corresponds to the implemented value
offered by Korea Information Security Agency.

To verify the design, SEED is synthesized in FPGA

— 341 —

Complier of SYNOPSYS with ALTERA 10K library and
simulation is performed in ALTERA MAX+PLUS IL
The design occupies 80% chip area of ALTERA device
family of FLEX 10KE and used logic cell is about 4300
in FPGA. Key is generated in a clock frequency of
111.11 MHz and a key generation rate of 74 Mbps. The
plain text is encrypted in a clock frequency of 131.57
MHz and an encryption rate of 29 Mbps. This encryption
rate is about 10 times faster than a software cipher and
about 2 times faster than a hardware cipher which was
previously implemented in another research.

If the design is synthesized with ASIC library, data is
encrypted in rate of about 50Mbps. And if modules
which were sequentially used can be designed into
parallel structures, performance would be progressed
further. In case of inserting one S-boxl and S-box2,
encryption rate is 61.9Mbps and the design uses the logic
cell of 6100 in FPGA. In case of inserting two additional
G-function which has internally parallel structure,
encryption rate of 168Mbps is predicted in FPGA
implementation.

5. Conclusion

In this paper SEED was designed and mapped in
FPGA without additional hardware and software.
Considering non-specific target, SEED had technology-
independent design structure. Since SEED algorithm
requires many hardware resources, SEED was
implemented into structures with minimal gate size. In
consideration of application into other systems, Primary
I/O port with 32-bit bi-directional ports was separately
designed in this paper. If cipher key is completely
protected by physical means such as smart card, SEED
which was implemented into hardware has enormous
security. And high performance of SEED enables real
time access of data. Therefore SEED that is a Korean
standard symmetric block cipher can be practically
applied in a lot of field, especially core-based design.

References

[1} National Bureau of Standards. FIPS PUB 46: Data
Encryption Standard, January 1997.

[2] Akihiro Shimizu and Shoji Miyaguchi. "Fast data
encipherment algorithm FEAL." In David Chaum and
Wyn L. Price, editors, Advances in Cryptology-Euro-
crypt'87, vol.304 of Lecture Notes in Computer
Science, pp.267-280, Springer-Verlag, Berlin, 1998.

[3] Lawewnce Brown, Josef Pieprzyk, and Jennifer
Seberry."LOKI-a cryptographic primitive for
authentica- tion and secrecy applications”. In Jennifer
Seberry and osef Pieprzyk, editors, Advances in
Cryptology Auscry- pt'90, vol.453 of Lecture Notes in
Computer Science, pp. 229-236, Springer-Verlag,
Berlin, 1990.229-236, Springer-Verlag, Berlin, 1990.

[4] James L. Massey. SAFER K-64: "A byte-oriented
block-ciphering algorithm”. In Ross Anderson, editor,
Fast Software Encryption, Cambridge Security
Workshop, vol.809 of Lecture NOtes in Computer
Science, pp.1-17, Springer-Verlag, Berlin, 1994.

[5] Xuejia Lai and James L. Massey. " A proposal for a

e resat
el ———
n__

= io_sel

o ad
A0 address
i io_dde

1
¢ key_gen éﬂ
m

K

b= data_act
wb key_ready
b data_teady
& io_datn

P
-y o
-t
-
-
it 1
bt Ll
ETIECTY 1
sy 1!
= ot SLULLLL UL UL L1

~ fca e b

[IO ______
CEED0 9030565080900 0EENN (HUHLH E0TE T R0 08 e o 4 (el
I A |

&1y
A (e rursat OGO 0300000080 XOXCCHC -0 T
oy [ANAERAENRAAREEAR

s T) @S T X8 (1 () Vs e (o (A) T
oW

b1 33 e I [N 1
wtaaat | L b1t Ul
v 111 [N 111
wrted e 111 NN 111

bt v dead ¢ NN
vt end € ¢ 1t [N [

- Lage st d L [P11 111

ow Cncland e e T T O I A O I)
oo Lond ot LE L Lttt 13110 [L

-« bay 1 J
e cats_vicy

- reset

wo TUUUUUULUUUUUUUUUUITUUUUUUUH
o io_sel
ot 1 J1 1 L

i address 0 X 1 ¥ 2 X 3 I
¥ io_galn
w~ key_gen
o dala_act
~ep kay_oady
g dea_ready
&P io_data

) @777

Fig. 14. Cipher key Input

= teset T

o UUUUUUT T U OO T T U U LR g
= io_sel [
- load 1 11 JL 71
¥ 3ddress 1] 1 2 3 0 M
¥ ia_tats . 00010203 D4DE0607 CE0Z0ADB DCOCOEDF Jzis77:44 H
&~ key_gen
o= dala_act
-« key_resdy
~ data_ready
& io_data 5 00010203 4060607 08090A08 OCODGETF 27722124 }
Fig. 15. Plain text input
- resel T
A N |
" awio_sel L]
= load 1 1
¥ eddrons 0 X 1 X 2 {3 X []
W io_duta fizizirid
- key_gen
- data_ad
~9 key_ready
- dsta_ready
2P io_data . CliF2r2 01405050 BA4EE55T EATUF G Jrivieied

Fig. 16. Cipher text output

now block encryption standard. in Ivan bjerre
Damgar-d", editor, Advances in Cryptology
Eurocrypt'90, vol.473 of Lecture Notes in Computer
Science, pp.389-404, Springer-Verla, Berlin, 1990.

[6] Korea Information Security Agency, A Design and
Analysis of 128-bit Symmetric Block Cipher(SEED),
1999. 4.

