Proceedings of ITC-CSCC 2000, Pusan, Korea

Direct Methods for Linear Systems
on Distributed Memory Parallel Computers

S. Nishimura', T. Shigehara', H. Mizoguchi’, T. Mishima' and H. Kobayashi?

'"Department of Information and Computer Sciences, Saitama University
Shimo-Okubo 255, Urawa, Saitama 338-8570, JAPAN
Phone: +81-48-858-9035, Fax: +81-48-858-3716
E-mail: seiji@me.ics.saitama~u.ac.jp, sigehara@ics.saitama-u.ac. jp
*Department of Mathematics, College of Science and Technology, Nihon University
Surugadai 1-8-14, Kanda, Chiyoda, Tokyo 101-8308, JAPAN

Abstract: We discuss the direct methods (Gauss-
Jordan and Gaussian eliminations) to solve linear sys-
tems on distributed memory parallel computers. It will
be shown that the so-called row-cyclic storage gives
rise to the best performance among the standard three
(row-cyclic, column-cyclic and cyclic-cyclic) data stor-
ages. We also show that Gauss-Jordan elimination,
rather than Gaussian elimination, is highly efficient for
the direct solution of linear systems in parallel process-
ing, though Gauss-Jordan elimination requires a larger
number of arithmetic operations than Gaussian elimina-
tion. Numerical experiment is performed on HITACHI
SR2201 with the standard libraries MPI and BLAS.

1. Introduction

Gauss-Jordan and Gaussian eliminations are the stan-
dard direct methods to solve dense linear systems. In
Gauss-Jordan elimination, the reduction of the coeffi-
cient matrix A to the identity matrix consists of n ma-
jor steps which correspond to n matrix row operations.
These are similar to the n steps in Gaussian elimina-
tion (LU decomposition) which reduce 4 to an upper
triangular matrix U. The difference between the two
eliminations lies in the fact that while the elements only
below the diagonal are eliminated in LU decomposition,
Jordan’s variation eliminates the elements not only be-
low, but also above the diagonal. As a result, the num-
ber of the arithmetic operations (additions and mul-
tiplications) is of O(2n®/3) for Gaussian elimination,
whereas Gauss-Jordan elimination requires the opera-
tions of O(n®). (We use the notation O(cn*) also for
the highest order term in the éxpression.) This is in-
deed the reason why Gaussian elimination rather than
Gauss-Jordan elimination is often used in sequential
processing. However, the aforementioned algorithms in-
dicate that the parallelism in Gauss-Jordan elimination
is much higher than that for Gaussian elimination, es-
pecially in the last steps for reduction [1}. The first
purpose of this paper is to show that parallel Gauss-
Jordan elimination is even faster than parallel Gaussian
elimination over a wide range of problem size n. It is
obvious that the parallelism is highly desired especially
in large-scale problems which can never be solved in
a realistic duration with the standard sequential ma-
chines. Keeping in mind the recent development of nu-
merical simulations in various fields including structure

analysis, fluid dynamics and quantum chemistry, it is
crucial to complete the reduction of matrix larger than
n ~ 10000 in a realistic duration. We show in this paper
that Gauss-Jordan elimination is indeed highly efficient
even for such a huge size of linear systems.

The second purpose is to examine the dependence
on data storage in the parallel eliminations. On dis-
tributed memory parallel computers, it is important to
choose suitable data storage which ensures the good per-
formance of arithmetic operations on each processor as
well as the balance between communication and compu-
tation. We examine the standard three types; row-cyclic
[2], column-cyclic [3], cyclic-cyclic [4] data storages. We
will show that the row-cyclic storage is most suitable
both for the eliminations.

The paper is organized as follows. Experimental
environment is explained in Sect.2. After examining
the standard sequential algorithm of Gauss-Jordan and
Gaussian eliminations in Sect.3, we discuss the parallel
algorithms in Sect.4. The current work is summarized
in Sect.5.

2. Experimental Environment

We summarize experimental environment in this sec-
tion. Numerical experiments are performed on HI-
TACHI SR2201, at the Computer Centre (current In-
formation Technology Center), the University of Tokyo.
The SR2201 is one of up-to-date parallel supercomput-
ers with distributed memory architecture. The theoret-
ical peak performance of a single processing element is
300 MFLOPS. The source programs are written by C
programming language. The compile options are +04
-Wc,’-h’. We use the DAXPY subroutine of level 1
BLAS library [5] for the most inner core loop in both
Gauss-Jordan and Gaussian eliminations. The opera-
tion of DAXPY is

=y +maz, (1)

where y, z are vectors with the same dimension and m
is a scalar. In parallel processing, we use MPI (Message
Passing Interface) [6] as communication library. The
MPI is a de facto standard library which describes the
data communication among multi processors. As the
coefficient matrix of linear systems, we take the Frank

—333 —

mat,rix A = (a;; fl_ n+ 1 —min(i,j); 4,7 =
e

1,2,--,n throughout the paper.

3. Standard Algorithm

The standard sequential algorithm of Gaussian and

Gauss-Jordan eliminations is shown in Fig.1. Here the -

partial pivoting is taken into account. In the actual im-
plementation, we use the DAXPY routine for the most
inner loop in both. Table 1 shows the execution time for
the problem size n = 1024 ,2048 and 4096. A remark-
able feature is that Gauss-Jordan elimination shows
fairly good performance even on a single processor. The
ratio of the execution time between Gauss-Jordan and
Gaussian eliminations is close to 1.0, contrary to the
value 1.5 expected from the operation count. This is be-
cause the performance of the DAXPY routine depends
on the length of the loop which calls DAXPY inside.
Fig.2 shows the average execution time for a single call
of DAXPY. Horizontal axis is the length of the loop
which calls DAXPY inside. The broken and solid lines
are the results for vector length 1024 and 2048, respec-
tively. As the loop length increases, the performance of
DAXPY becomes higher. In Gauss-Jordan elimination,
all rows except the pivot row are eliminated. Hence,
DAXPY is always called n — 1 times at each step of
the elimination. On the other hand, Gaussian version
eliminates the rows only below the pivot row. As a re-
sult, the number of calls of DAXPY becomes smaller and
smaller, as the elimination proceeds. This is the rea-
son why Gauss-Jordan elimination is comparable with
Gaussian elimination even in a single processing.

Table 1: Execution time [sec] of Gauss-Jordan and
Gaussian eliminations on a single processor.
[n] Gauss-Jordan | Gaussian |
1024 14.36 13.53
2048 113.50 108.29
4096 905.55 877.26

4. Parallel Algorithm

We proceed to the parallel algorithms of Gauss-Jordan
and Gaussian eliminations. In the following, we denote
the number of processors by p and label p processors
by 0,1,2,---,p — 1, respectively. In parallel process-
ing, the performance depends on the data storage, in
general. We examine the standard three types; row-
cyclic, column-cyclic, cyclic-cyclic data storages. Fig.3
schematically shows each data storage in case of p = 4
and n = 8. The data partition for a general case is
determined in a similar manner. (We assume that n/p
is an integer for row-cyclic and column-cyclic storages,
while \/p and n/,/p are integers for cyclic-cyclic stor-
age.)

For row-cyclic storage, the parallel algorithm at each
step of the elimination is as follows;

Row-cyclic storage:

Gauss-Jordan elimination
/* initialize of index vector : pv */
for k=1 to n
/* partial pivoting */
pv-k = pv(k);
inv_pv := 1/a(pv.k,k);
for i=1 to n
if(i # pvXk)
m := a(i,k)*inv_pv;
for j=k+1 to n
a(i,j) := a(i,j)-mxa(pvk,j);
end
b(i)
end
end
end

= b(i)-m*b(pv.k);

Gaussian elimination (LU factorization)
/* initialize of index vector : pv */
for k=1 ton
/* partial pivoting */
pvk = pv(k);
inv_pv := a(pv k,k) := 1/a(pvk,k);
for i=k+1 to n
pvi = pv(i);
m := a(pv-i,k) := a(pv_i,k)*inv_pv;
for j=k+1 ton
alpv.i,j) := a(pv-i,j)-m*a(pv.k,j);
end
b(pv_i)
end
end

= b(pv_i)-m*b(pv.k);

Figure 1: Standard sequential algorithm for Gauss-Jordan
and Gaussian eliminations with partial pivoting.

1. Each processor performs local partial pivoting and
sends the local pivot element to processor 0 by us-
ing MPI_Reduce function with MPI_.MAXLOC (max-
imum and location of maximum) operand.

2. Processor 0 determines the global pivot row and
renews the index vector.

3. Processor 0 sends the index vector to all other pro-
cessors by using MPI_Bcast function.

4. Processor which has the global pivot row sends it to
all other processors by using MPI_Bcast function.

5. Each processor performs the elimination procedure
by using DAXPY.

Note that one call of MPI_Reduce and two calls of
MPI_Bcast are required at each step of the elimination
for row-cyclic storage.

For column-cyclic storage, the parallel algorithm at -
th (k= 1,2,---,n) step of the elimination is as follows.
Here we set k = k — 1 (mod p). Note that the k-th

column is stored in processor k.

8005 r T T T T B eryvon S
*1024.dat” -

Average Execution time of Daxpy {sec]

L 2 . L L .
1500 2000 2500 3000 3500 4000 450
Number of lteration

2 2
0 500 1000

Figure 2: Average execution time [sec] for a single call of
DAXPY. Horizontal axis is the length of the loop which
calls DAXPY inside. Broken and solid lines show the
result for the vector length 1024 and 2048, respectively.

Column-cyclic storage:

1. Processor k performs (global) partial pivoting and
renews the index vector.

2. Processor k sends the index vector to all other pro-
cessors by using MPI_Bcast function.

3. Processor k calculates the ratios (multipliers m in
Fig.1) between the pivot element and other ele-
ments in k-th column (except the pivot element in
Gauss-Jordan elimination, while below the pivot
element in Gaussian elimination).

4. Processor k sends the multipliers to all other pro-
cessors by using MPI_Bcast function.

5. Each processor performs the elimination procedure
by using DAXPY.

Two calls of MPI_Bcast are required at each step of the
elimination for column-cyclic storage.

In cyclic-cyclic storage, the grid structure of proces-
sors naturally induces the matrix notation in labeling
processors; p(i;j), (i,7 = 0,1,2,---,/p — 1). For in-
stance, p(0;0) = 0, p(0;1) =1, p(1;0) = 2 and p(1;1) =
3 in Fig.3. In addition to the standard global commu-
nicator MPI_COMM WORLD, each set of the processors
{p(Z,J)U = 0a1,27"'a\/ﬁ_ 1}7 (’L = 071>27"')\/1_7_ 1)
constitutes a communication universe in the row direc-
tion. As well, each set of {p(4;j)|i =0,1,2,---,/p—1},
(3 =0,1,2,---,,/p — 1) constitutes a communication
universe in the column direction. The parallel algorithm
at k-th (k =1,2,---,n) step of the elimination is shown
below. Here we set k = k — 1 (mod,/p). Note that the

elements of k-th column are stored in processors p(%; I~c),
(i=0,1,2,---,/p—1).

Cyeclic-cyclic storage:

1. Processors p(i;fc), (i=0,1,2,---,/p— 1) perform
local partial pivoting and send the local pivot el-

ement to processor p(0;k) by using MPI_Reduce
function with MPI_MAXLOC operand.

o e N e

3

Row-Cyclic Column-Cyclic

0 13 0} 13 01 3
A k] BN WA
ol 1§ ot 24 0) 14 OF 3
22l ol 2l 21 3
ol 1 o} 2b 0f 14 O 1
VA b2] AR W
0] 18 0] 1§ O] 1
21 38 2 2] 3821 3

Cyclic-Cyclic

Figure 3: Schema of the three storages for p = 4,n = 8.
The number on each vector (matrix element) represents
the label of processor which stores it.

2. Processor p(0; k) determines the global pivot row
and renews the index vector.

3. Processor p(0; k) sends the index vector to all other
processors by using MPI_Bcast function.

4. Processors which have the elements of the global
pivot row, say p(;j), (=0,1,2,---,/p— 1) with
some fixed ¢, send them to all other processors
p(55), (6 = 0,1,2,---,i~Li+1,---,/p—1) in
the same column by using MPI_Bcast function.

5. Processors p(7; I~c), (¢=10,1,2,---,,/p—1) calculate
the multipliers and send them to all other proces-
sors p(4;7), (j =0,1,2,---) k~1L,k+1,---,,/p—1)
in the same row by using MPI_Bcast function.

6. Each processor performs the elimination procedure
by using DAXPY.

One call of MPI_Reduce and three calls of MP|_Bcast are
required at each step of the elimination for cyclic-cyclic
storage.

Table 2 shows the execution time of parallel Gauss-
Jordan and Gaussian eliminations for each data storage.
The number of processors is fixed at p = 64, which is
nearly the best for problem size n ~ 2000 for each stor-
age. It can be seen that the row-cyclic storage gives
rise to the best performance both for Gauss-Jordan and
Gaussian eliminations. This is mainly because the core
loop consists of a row operation (1) both for the elimi-
nations. Also, in case of row-cyclic storage, partial piv-
oting as well as the calculation of multipliers can be
performed completely in parallel. This is not the case
for column-cyclic and cyclic-cyclic storages. In column-
cyclic storage, in particular, partial pivoting as well as
the calculation of multipliers concentrates on a single
Processor.

— 335 —

Table 2: Dependence on data storage. The number of
processors is fixed at p = 64. Execution time is given
in units of second.

[~ Gauss-Jordan elimination]

[n [row-cyclic | column-cyclic | cyclic-cyclic]
1024 1.08 371 197
2048 6.42 18.09 18.98

| Gaussian elimination]

[n [row-cyclic | column-cyclic | cyclic-cyclic |
1024 2.14 3.68 3.67
2048 7.23 13.26 13.90

Table 3: Execution time [sec} of parallel Gauss-Jordan
and Gaussian eliminations with row-cyclic storage.

[Gauss-Jordan elimination |
[p [[n=4096 [n=_8192 | n =16384 |

16 62.31 461.69 3583.63
32 38.47 245.88 1871.39
64 27.60 150.51 1000.89
128 23.61 107.80 588.70
256 23.33 91.38 410.28

| Gaussian elimination |
[p [[n=4096] n=28192 [n=16384 |

16 65.34 471.14 3615.06
32 41.73 259.47 1925.48
64 31.00 164.83 1056.87
128 27.08 122.63 648.37
256 26.74 105.97 470.18

Let us proceed to examine the efficiency of parallel
Gauss-Jordan and Gaussian eliminations. In the follow-
ing, we assume the row-cyclic storage. Table 3 shows
the execution time for both eliminations in case of prob-
lem size n = 4096, 8192 and 16384. For each case, the
number of processors is changed as p = 16,32, 64, 128
and 256. One can see that Gauss-Jordan elimination
surpasses Gaussian elimination in the whole range of
n and p. As the number of processors increases, the
number of rows on each processor becomes small (1/p
compared to a single processing). As a result, the ac-
celeration by DAXPY discussed in the previous section
is weakened in parallel processing. However, it still
remains especially in Gauss-Jordan elimination; The
DAXPY routine is called n/p times on each processor at
each step of Gauss-Jordan elimination, while in Gaus-
sian elimination, the number of calls of DAXPY becomes
smaller, as the elimination proceeds.

In case of row-cyclic storage, the execution time of
Gaussian elimination with partial pivoting depends on
the coeflicient matrix A, since it eliminates the elements
only below the pivot row. The Frank matrix causes no
interchange of rows and as a consequence the load bal-
ance is completely kept among processors throughout
the elimination. This means that the performance with
the Frank matrix is the best for Gaussian elimination
with partial pivoting. Note that the performance does
not depend on the coefficient matrix in Gauss-Jordan

elimination (even with partial pivoting). This indicates
that the efficiency of Gauss-Jordan elimination becomes
even higher for generic coefficient matrices.

It is important to estimate the execution time T'(n, p)
for a given problem size n and the number of proces-
sors p. Based on a semi-theoretical argument, we have
shown in [1] that the execution time of Gauss-Jordan

- elimination with row-cyclic storage is estimated as

3
T(n,p) = a% +An'™ Inp, 2)

where the first and second terms on RHS describe the
computation and communication times, respectively.
The three parameters can be easily determined by sim-
ple benchmarks; o = 1.32 x 1078 [sec], 8 = 0.58 x 10™°
[sec], v = 0.58 on SR2201 [1]. The estimate (2) is quite
satisfactory all over the range of n and p in Table 3. We
also stress that Eq.(2) makes it possible to determine
the optimum number of processors for a given problem
size before the actual execution.

5. Conclusion

We have discussed Gauss-Jordan and Gaussian elimi-
nations for dense linear systems on distributed memory
parallel computers. Contrary to a native expectation
from the number of floating-point operations, Gauss-
Jordan elimination is highly efficient and it indeed sur-
passes the Gaussian elimination in execution time. Con-
cerning the data storage, the row-cyclic type is the most
suitable because the core loop of both the eliminations
consists of a row-vector operation. Numerical experi-
ments on HITACHI SR2201 confirm the validity of our
argument.

References

[1] S. Nishimura, T. Shigehara, H. Mizoguchi, and
T. Mishima, “Efficiency of Gauss-Jordan Elimi-
nation for Dense Linear Systems on Distributed
Memory Parallel Computers,” Proceedings of ITC-
CSCC 99, vol.2, pp.812-815, Sado, July, 1999.

[2] G. Golub and J.M. Ortega, “Scientific Comput-
ing -— An Introduction with Parallel Computing,”
Academic Press, London, 1993.

[3] J.J. Dongarra and R.A. van de Geijn, “Reduction
to condensed form for the eigenvalue problem on
distributed memory architectures,” Parallel Com-
puting, vol.18, pp.973-982, 1992.

[4] H.Y. Chang, S. Utku, M. Salama, and D. Rapp, “A
parallel Householder tridiagonalization stratagem
using scattered square decomposition,” Parallel
Computing, vol.6, pp.297-311, 1988.

[5] J.J. Dongarra, 1.S. Duff, D.C. Sorensen, and H.A.
van der Vorst, “Solving Linear Systems on Vector
and Shared Memory Computers,” SIAM, Philadel-
phia, 1991.

(6] Message Passing Interface Forum, “MPI: A mes-
sage passing interface standard,” Special issue on
MPI, International Journal of Supercomputer Ap-
plications, vol.8, no.3/4, 1994.

— 336 -

