Proceedings of ITC-CSCC 2000, Pusan, Korea

Specification and verification of
a single-track railroad signaling in CafeOBJ

Takahiro Seino, Kazuhiro Ogata, and Kokichi Futatsugi
Graduate School of Information Science, JAIST
1-1 Asahidai, Tatsunokuchi, Ishikwa 923-1292, JAPAN
{t-seino, ogata, kokichi}@jaist.ac.jp

Summary. A signaling system for a single-track
railroad has been specified in CafeOBJ. In this paper,
we describe the specification of arbitrary two adja-
cent stations connected by a single line that is called
a two-station system. The system consists of two sta-
tions, a railroad line (between the stations) that is
also divided into some contiguous sections, signals and
trains. Each object has been specified in terms of
their behavior, and by composing the specifications
with projection operators the whole specification has
been described. A safety property that more than one
train never enters a same section simultaneously has
also been verified with CafeOBlJ.

1 Introduction

Since key industrial systems such as railroad signaling
systems and aviation contro! systems heavily affect
people’s lives, we must improve their safety as much
as possible. We do not think that we can improve
their safety in an ad hoc way because the systems are
complex as well as huge. It is one possible approach
to improving their safety that we formally specify the
systems and verify some properties that the systems
should have based on the formal specifications.

Formal specification languages in which we can for-
mally specify systems and with which we can for-
mally verify their properties have been proposed.
CafeOBJ [4] is one of them. CafeOBJ allows us to
specify state machines or objects of object-oriented
systems in terms of their behavior.

We believe that case studies that we formally spec-
ify and verify some systems have to be done so that we
can improve specification and verification techniques
with formal specification languages such as CafeOBJ,
and also make the languages easier to use. Therefore,
as a case study we have done the following experi-
ment. We have specified a kind of railroad signaling
systems in CafeOBJ, and have formally verified the
system has an important safety property based on the
formal specification with the help of the CafeOBJ sys-
tem.

Railroad systems usually adopt block systems so
as to protect collisions between trains[9]. In block

systems, railroad lines are partitioned into contiguous
sections, in each of which at most one train is allowed
to be. Railroad signaling systems are designed to aim
at (semi-)automatically implementing block systems.
We have dealt with a single-track railroad system that
consists of a straight line on which more than one sta-
tion is located. In this paper, we describe the speci-
fication of arbitrary two adjacent stations connected
by a single line that is called a two-station system and
the verification that no collision occurs.

The rest of the paper is organized as follows. Sect. 2
mentions CafeOBJ and how to specify systems in
CafeOBJ and verify their properties with CafeOBJ.
Sect. 3 describes two-station systems, their specifica-
tion in CafeOBJ, and the verification with CafeQOBJ
that the systems have a safety property that more
than one train never enters a same section simulta-
neously. In Sect.4, we introduce some related works,
and we finally conclude the paper in Sect. 5.

2 CafeOBJ in a nutshell

CafeOBJ [4] is a direct successor of OBJ3[7] that
is one of the best-known algebraic specification lan-
guages. One of the outstanding features of CafeOBJ
is that we can specify state machines or objects nat-
urally, which were supposed to be difficult to spec-
ify in algebraic specification languages. The point is
hidden algebra [6], with which we specify objects in
terms of their behavior. There are two kinds of sorts
in hidden algebra: hidden and visible sorts. A hidden
sort represents the state space of an object, and a vis-
ible one usual data such as integers. There are also
two kinds of operations: action and observation opera-
tions. An action operation may change the state of an
object, and the state of an object can be only observed
with observation ones. We use projection operations
to combine specifications for component systems and
build a specification for a compound system.

We show a specification for fields of radio buttons
as an example. Fig.1 shows a field of radio buttons
consisting of three buttons. We can use fields of radio
buttons to exclusively choose one among the buttons.
We first show the signature of a specification for but-

o G T

Figure 1: Fields of radio buttons.

tons from which fields of radio buttons are made:

op init : Bool -> Btn -- injtial state.
bops on off : Btn -> Btn -- actions.
bop on? : Btn -> Bool -- observatiom.

Btn is a hidden sort representing the state space of
each button, and Bool is a (built-in) visible sort
representing boolean values. Operator init takes a
boolean value, representing the initial state of a but-
ton. Action operators on and off can select and diss-
elect a button, respectively. Observation operator on?
allows us to observe the state of a button, i.e. selected
or disselected represented by true or false. We use
equations to define what happens next after applying
an action operator to a button. The equations for
buttons are as follows:

eq on? (init (B:Bool)) =B .
eq on? (on (S:Btn)) = true .
eq on? (off (S:Btn)) = false .

B and S are variables whose sorts are Bool and Btn,
respectively. The first equation means that the initial
state of a button is what is given to the button as its
argument. The second (or third) equation means that
the state of a button is changed to true (or false}, i.e.
selected (or disselected), after applying on (or off) to
the button.

We next show the signature of a specification for
fields of radio-buttons:

op imit : -> RdBtn -- ipitial state.
bop on : BtnID RdBtn -> RdBtn -- action.

bop on? : BtnID RdBtn -> Bool ~-- observation.
bop btn : BtnID RdBtn -> Btn ~= projection.

Hidden sort RdBtn represents the state space of fields
of radio buttons. Visible sort BtnID represents IDs for
each button. We use action operator on, observation
operator on?, and projection operator btn to select,
observe, and obtain a button whose ID is given as its
first argument, respectively. Observation operator on?
for fields of radio buttons is defined with observation
operator on? for component buttons as follows:

eq on? (BTN, R) = on? (btn (BTN, R)) .

where BTN and R are variables whose sorts are BtnID
and RdBtn, respectively. The following equation
means that every button of fields of radio buttons is
initially disselected:

eq btn (BTN, init) = init (false) .

The following two equations mean that if a button is
selected, any other button is disselected:

RadioBtn Btn
L n p—A Bu_ |

Figure 2: UML object diagram for fields of radio-buttons.

ceq btn (BTN, on (BTN’, R)) = on (btn (BTN, R))
if BTN == BTN’ .

ceq btn (BTN, on (BTN’, R)) = off (btn (BTN, R))
if BTN =/= BTN’ .

We show the verification that a fields of radio but-
tons has the safety property that at most one but-
ton is selected. We suppose that there are at least
two buttons in a fields of radio buttons. Since every
button in any fleld of radio buttons is initially disse-
lected from the specification, the safety property ini-
tially holds. Then all we have to do is that given any
state in which the safety property holds, we show that
the safety property also holds in each next state after
applying any action operator to the state. There are
two cases that the safety property holds: 1) no but-
ton is selected, and 2) only one button is selected. The
state corresponding to the cases (1) and (2) are repre-
sented by rbl and rb2, respectively. We suppose that
b1l and bi2 are arbitrary buttons in rbi, and rbi’
represents the next state after selecting b11. The fol-
lowing proof score makes it possible to show that the
safety property holds in xb17:

ops rbi rbl’ : -> RdBtn .
ops bii b12 : -> BtnlD .
eq on? (btn (bll, rbl)) = false .
eq on? (btm (b12, rbl)) = false .

eq rbl’ = on (bll, rbl) .
red on? (bli, rbi’) == true
and on? (bi2, rbl’) == false .

The case (2) is divided into two cases that 2a) the se-
lected button is selected again, and 2b) any disselected
button is selected. We suppose that b21 and b22 are
the selected button and an arbitrary disselected but-
ton in rb2, and rb2a’ and rb2b’ represent the next
states after selecting b21 and 122, respectively. The
case (2b) is also divided into two cases that there are
two buttons, and more than two buttons. We sup-
pose that b23 represents an arbitrary disselected but-
ton except for b22 in rb2 if there are more than two
buttons. The following proof score makes it possible
to show that the safety property holds in rb2a’ and
rb2b’:
ops rb2 rb2a’ rb2b’ : -> RdBtn .
ops b2l b22 b23 : => BtnlD .
eq on? (btn (b21, rb2)) = true .
eq on? (btn (b22, rb2)) = false .
eq on? (btn (b23, rb2)) = false .
eq rb2a’ = on (b21, rb2) .
eq rb2b’ = on (b22, rb2) .
red on? (b21, rb2a’) == true
and on? (b22, rb2a’) == false .
red on? (b21, rb2b’) == false
and on? (b22, rb2b’) == true
and on? (b23, rb2b’) == false .

We have completed the verification that a fields of
radio buttons has the safety property.

— 269 —

3 A single-track railroad system

We consider a two-station system shown in Fig. 3. The
system has seven sections! T, (n=1,...,7) and four sig-
nals Sy, (n=1,...,4)- A station consists of three sections:
T1, Te, and T3 for station A, and Ts, Tg, and T for
station B. A section has two properties: the number
of trains in it and the direction. The direction has
three possible values: Lg; (for left), Rqir (for right),
and Ngi (for unspecified). A signal has two possible
states: G (for green) and R (for red) with usual mean-
ings.

Initially there are two trains Cy and Cs in the sys-
tem as shown in Fig. 3, and every signal shows R. Be-
sides, T; and T, T2 and T7, and T3, T4, and T have
Rdir, Lair, and Ny, respectively, in the initial state,
and the directions of Ty, T2, Tg, and T7 cannot be
changed.

Let us show one possible scenario that train C;
reaches station B shown in Fig. 4:

1. Fig.4 (a) shows the initial state.

2. It is confirmed whether the direction of T4 is Ngir,
and only if so, the direction is set to Rgir(see Fig.4
(b)).

3. It is confirmed whether the direction of T3 and Ty is
Nair and Rugir, Tespectively, and only if so, the direc~
tion of T3 is set to Rair. It is confirmed whether both
directions of T3 and T4 are Rg;ir, and there is no train
on T3 and T4, and only if so, S; is changed to G from
R (see Fig. 4 (c)).

4. It is confirmed whether S; is G, and only if so, C; is
moved to T3 from T; and S, is changed to R at the
same time (see Fig.4 (d)), and then C; is moved to
Ty.

5. It is confirmed whether the direction of Ts is Ngjr, and
only if so, it is set to Raqir. It is confirmed whether
the direction of Ts is Rair, and there is no train on
Ts and Ts, and only if so, S3 is changed to G from R
(see Fig.4 (e)).

6. It is confirmed whether S3 is G, and only if so, C; is

moved to Ts from T4 and T3 is changed to R at the
same time, and then C; is moved to Te (see Fig.4

(£))-

In the above scenario, we have mentioned how ob-
jects such as S, change théir states. We describe how
to change the states of objects in more detail.

T Os: Ts
- —c>- T SO m——
T: Ts ‘-CTS Tz
— — O1 S2 -—
S:On

Station A Station B

Figure 3: Two-station system.

1Each T may not actually correspond to a section, but in
this paper it is regarded as a section for brevity.

» oI ®s T S LN
e WG
- T (‘D“S2 -@l -—

T S T
b) —@—%l_ Ts Ss L® ¢ —>
Tz ’ ® == —Gs T:
- = -
SO
T S T.
c) > ——-E>—LCCD : Ts S L ® .
ey SR
- GO"S2 ®1 ! -
S4
T S T
9 - @, T S® 2 -
Ta I’, _— —G& T
- ; o
Sa
e) _, T ®s: Ta @) T —
T: -T—i ®'|Sz —= I: T
—
s <
T S T
N T o, S
T: I’. —_— Ts T
- — ®"S2 é: z -~
S4

Figure 4: One possible scenario.

e The direction of T4 can be set to either Rair or Lgir
only if it is Ngir. It can be set back to Ngir from Rair
(or Lair) if the direction of T3 (or Ts) is Nais.

e The direction of T3 can be set to Rqir (or Lair) only if
it is Nair and the direction of T4 is Rair (or any value).
It can be set back to Ng;r only if there is no train on
it. The direction of T5 can be changed likewise.

e 51 can be changed to G from R only if there is no
train on both T3 and T4, and both direction of T3
and T4 are Rqir. If a train enters T3, or the direction
of T3 is set back to Ngir, S; must be set back to R
simultaneously. S4 can be changed likewise.

e 53 can be changed to G from R only if there is no
train on both Ts and Te, and the direction of Ts is
Rair. If a train enters Ts, or the direction of T is set
back to Nair, S3 must be set back to R simultaneously.
S2 can be changed likewise.

3.1 Specification

We have written the specification of the two-station
system described above in CafeOBJ. Roughly speak-
ing, the specification is a composite one of several
specifications of components, i.e. trains and sections.
Signals are represented by sections. For example,
S1 is done by T3 and T4. Components are synthe-
sized according to the component-based specification
in CafeOBJ [5]. The point is projection operations,
with which the specification of a whole system can be
written in terms of behavior of components. Fig.2
shows the UML object diagram corresponding to our
specification.

We show the main part of the specification of the
two-station system:

— 270 —

op init : => 8ys -- initial state.
bop watch? : SignallD Sys ~> Signal -- observation.
bop where? : TrainID Sys -> TcID -- observation.
bop reach : TrainID Sys -> Sys -- actiomn.

bop leave : TrainID Sys -> Sys -- action.

bop move : TrainID Sys -> Sys -~ action.

bop setdir : TcID Dir Sys -> Sys -- action.

op train : TrainID Sys -> Train -- projection.

op tc : TcID Sys -> Tc¢ —-- projection.

Sys is a hidden sort representing the state space of
the two-station system, and Train and Tc are also hid-
den sorts representing the state spaces of a train and a
section that are components of the system. The other
sorts are visible ones. Bool represents the boolean
values, TrainID, SignalID, and TcID represent IDs of
trains, signals, and sections, respectively, and Signal
and Dir represents values of signals and directions of
sections, respectively.

Operator init represents the initial state of the
two-station system. Operators watch? and where?
are observation ones. watch? returns either R or G of
the signal given as its first argument. where? returns
the section where the train given as its first argument
is. Operator reach, leave, move, and setdir are ac-
tion ones. reach puts a train that runs from left to
right (or from left to right) on Ty (or T7), which means
that a train enters a station from a yard or the previ-
ous section of T} (or T7). leave is the opposite one
that removes a train from Ty (or T7). move moves
a train to the next section. If the next section has a
signal, the operator is enabled (or can change the sys-
tem state) only if the signal is G. setdir sets a section
(except for Ty, Tq, Te, and T7) to either Lgir, Ryir, or
Ngir- The operators train and tc are projection ones
that combine the specifications of trains and sections.

We describe how to define each operation with equa-
tions.

Action operator setdir only affects each section T,
in the two-station system. Each train C, cannot be
affected by setdir at all. So, it is very simple to define
setdir for projection operator train as follows:

eq train (TR, setdir (TC, D, S)) = traim (TR, S) .

The equation means that even if setdir sets a section
TC in a system S to a direction D, a train TR does not
change its state at all. On the other hand, setdir for
projection operator tc is defined as follows:

ceq tc (TC, setdir (TC’, D, S)) =
setdir (D, tc (TC, S))
if TC == TC’ and setdir-cond (TC, D, S) .
ceq tc (IC, setdir (TC’, D, 8)) = tc (TC, S)
if TC =/= TC’
or mnot (setdir-comd (TC, D, S)) .

—‘{ TwoStationsSys I'——-[T
L

[1 1
[Tamn | [T || o J [T]

Figure 5: UML object diagram for two-station systems.

setdir on the left-hand side of each equation is an ac-
tion operator for the whole system, and setdir on the
right-hand side is an action operator for each section.
The first equation means that if setdir tries to set
a section TC’ in a system S to a direction D provided
that a condition setdir-cond is satisfied, the section
TC’ is actually set to the direction. The second equa-
tion means that even if setdir tries to set TC’ in S to
D, any other section TC does not change its state, and
the section TC’ does not change its state either unless
the condition setdir-cond is satisfied.

The condition setdir-cond is defined for each sec-
tion T,. For sections t1, t2, t6, t7, and yard, the
condition setdir-cond is always false as defined as
follows:

op setdir-cond : TcID Dir Sys -> Bool

eq setdir-cond (t1, D, S) = false .
eq setdir-cond (t2, D, S) = false .
eq setdir-cond (t6, D, S) = false .
eq setdir-cond (t7, D, S) = false .

eq setdir-cond (yard, D, S) = false .

where tn and yard are constants representing a sec-
tion, and the previous section of either T; or Ty,
respectively. For t3, t4, and t5, the condition
setdir-cond is defined as described earlier. The def-
inition is as follows:

eq setdir-cond (t3, L, S) = dir? (tc (£3, §)) == N .
eq setdir-cond (t3, R, §) = dir? (tc (t3, §)) == N
and dir? (tc (t4, S)) ==R .
eq setdir-cond (t3, N, S) = not
(exist? (tc (t3, S))) .
eq setdir-cond (t4, L, S) = dir? (tc (t4, §)) == N .
eq setdir-cond (t4, R, 8) = dir? (tc (t4, S)) == N .

eq setdir-cond (t4, N, S) (dir? (tc (t4, S)) ==
and dir? (tc (t3, 8)) == N)
or (dir? (tc (t4, 8)) ==

and dir? (tc (t5, S)) == N) .
eq setdir-cond (t5, L, 8) = dir? (tc (t5, 8)) == N
and dir? (tc (t4, S)) ==L .
eq setdir-cond (t5, R, §) = dir? (tc (t5, §)) == N .
eq setdir-cond (t5, N, §) = not
(exist? (tc (t5, S)))

where constants L, R, and N represent Lgir, Rair, and
Nair, respectively, and dir? and exist? are observa-
tion operators for sections T, with which we can ob-
serve the direction of each section and confirm whether
there exist trains on each section, respectively. For
example, for the section t3 in a system S and the di-
rection L, the condition setdir-cond is true if the
direction of t3 in S is N.

Observation operator watch? obtaining the state of
each signal is defined as follows:

ceq watch? (SG, S)
ceq watch? (SG, §)

G if signal-cond (SG, S) .
R if not (signal-comnd (SG, S)) .

A signal SG is G (or R) if a condition signal-cond
is satisfied (or not). The condition signal-cond is
defined for each signal as follows:

— 271 —

op signal-cond : SignallD Sys -> Bool

eq signal-cond (s1, S) = exist? (tc (t3, 8)) == false
and exist? (tc (t4, S)) == false
and dir? (tc (t3, 8)) ==R .

eq signal-cond (s2, 8) = exist? (tc (t2, S)) == false
ard exist? (tc (£3, $)) == false
and dir? (tc (t3, S)) ==L .

eq signal-cond (s3, 8) = exist? (tc (t5, S)) == false
and exist? (tc (t6, S)) == false
and dir? (tc (t5, S)) == R .

eq signal-cond (s4, 8) = exist? (tc (t4, S)) == false
and exist? (tc (t5, S)) == false
and dir? (tc (t5, S)) ==L .

where sn is a constant representing S,. The above
equations basically correspond to what we have de-
scribed on behavior of each signal except that the di-
rection of T4 is not inspected. The reason why the
inspection does not need to do is because if the direc-
tion of T (or T5) is Rqir(or Lgic), it is clear from the
definition of setdir-cond that the direction of Ty is
also Rgjr(or Lair)-

Action operator move for projection operator train
is defined as follows:

ceq train (TR, move (TR’, S)) = move (train (TR, S))
if TR == TR’
and move-cond (where? (TR, S), TR, S) .
ceq train (TR, move (TR’, S)) = train (TR, S)
if TR =/= TR’
or not (move-cond (where? (TR, S), TR, S)) .

move on the left-hand side of each equation is an ac-
tion operator for the whole system, and move on the
right-hand side is an action operator for each train
component. The first equation means that if move
tries to move a train TR’ to the next section provided
that a condition move-cond is satisfied, the train TR’
is actually moved to the next section. The second
equation means that even if move tries to move a train
TR’ to the next section, any other train does not move
at all, and the train TR’ does not move either unless
move-cond is satisfied. Action operator move for pro-
jection operator tc is defined as follows:

ceq tc (TC, move (TR, S)) = enter (tc (TC, S))

if TC == where? (move (train (TR, S)))

and move-cond (where? (train (TR, S)), TR, S) .
ceq tc (TC, move (TR, S)) = leave (tc (TC, S))

if TC == where? (train (TR, S))

and move-cond (where? (train (TR, S)), TR, S) .
ceq tc (IC, move (TR, S)) = tc (TC, S)

if TC =/= where? (train (TR, S))

or TC =/= where? (move (train (TR, S)))

or not

(move~cond (where? (train (TR, S)), TR, S)) .

where enter is an action operator for a section, mean-
ing that a train has entered the section, and where?
is an observation operator for a train observing the
section on which there exists the train. The first {or
second) equation means that if move tries to move a
train TR in a system S provided that the condition
move-cond is satisfied, the train TR enters the next of
the section where TR is (or leaves the section where
where TR is). The third equation means that even if

move tries to move TR in S, no train enters and/or
leaves any other section, and no train enters and/or
leaves the section where TR is and the next section
unless the condition move-cond is satisfied.

The condition move-cond is defined for each section
as follows:

op move—cond : TcID TrainID Sys -> Bool
eq move-cond (t1, TRR, S) = watch? (si, S) == G .

eq move-cond (t2, TRR, S) = false .
eq move-cond (t3, TRR, S) = true .
eq move-cond (t4, TRR, S) = watch? (s3, 8) == G .
eq move-cond (t5, TRR, S) = true .
eq move-cond (t6, TRR, S) = false .
eq move-cond (t7, TRR, S) = false .

eq move-cond (yard, TRR, S) = false .

The above equations are good for a train moving from
left to right. For example, a train on section T; can
move to section Tg if signal S; shows G, a train on
section To cannot move to section T3 at any time,
and a train on section T3 can always move to sec-
tion T4, which are represented by the first, second,
and third equations, respectively. The equations for a
train moving from right to left can be defined as well.

Action operations reach and leave can be defined
as move.

3.2 Verification

We have proved that the two-station system has a
safety property that more than one train never en-
ter a same section simultaneously. We describe the
verification.

Basically we have used the same verification tech-
nique described in Sect. 2. In the two-station system,
however, there are states such that although the states
have the property, the property is not preserved in the
next states after applying some action to the states.
Therefore, we first find out such states, and then show
that these states are not reachable from the initial
state.

There are basically four cases corresponding to such
cases. For the symmetry of the two-station system,
however, only two cases should be considered. The
two cases are (rl) and (r2) shown in Fig.6. Suppose
that there exist two trains moving left on T» and T,
respectively, the two trains are on T simultaneously
if action operator move is applied to the train on Tj.
Now we show that any state corresponding to the case
(r1) is not reachable. Although there are more than
one state that are predecessors of the states corre-
sponding to the case (rl), we only need to consider
the states corresponding to the case (r1’) because any
other previous state coincides with one of the states
corresponding to the case (rl). Only applying move
to the train on T4 in the case (rl’) could change a
state corresponding to (rl’) to a state corresponding
to (r1). Therefore, we have only to show that such a
transition cannot be happened. The following proof
score can prove this:

— 272 —

ops ¢l c2 : -> L-TrainID .
ops rl r1’ : => Sys .

eq where? (train (ci, ri1’))
eq where? (train (c2, ri’))
eq dir? (train (ci, r1’))
eq dir? (train (c2, r1’))
eq howmany? (tc (t2, r1’))
eq howmany? (tc (t3, r1’))
eq howmany? (tc (t4, r1’))
eq rl = move (c2, rt’) .
red where? (c2, ri’) == where? (¢2, rl) .

lad
N

nn
nwnn

[l I
n cwn
[N o)

Next let us consider the case (r2). Suppose that
there exist a train moving right on T3 and a train
moving either left or right on T4, the two trains are
on T, simultaneously if action operator move is ap-
plied to the train on T3. We can show that any state
corresponding to the case (r2) is not reachable in the
same way as the case (rl). In this case, there are
two cases (r2a) and (r2b) corresponding to the states
that are predecessors of the states corresponding to
the case (r2). Moreover, we have to consider two cases
(r2b’) and (r2b”) that are predecessors of the states
corresponding to the case (r2b) because a state corre-
sponding to the case (r2b) can be changed to a state
corresponding to the case (r2). In this paper, we only
show that any state corresponding to the case (r2b’) is
not reachable. The other three cases can be done like-
wise. The following proof score makes it possible to
show that any state corresponding to the case (r2b’)
is not reachable:

op ¢l : ~> L-TrainID .

op €2 : -> R-TrainlID .

ops r2b r2b’ : -> Sys .

eq where? (train (ci1, r2b’))
eq where? (train (c2, r2b’))
eq dir? (train (c2, r2b?)) =
eq howmany? (tc (ti, r2b’))
eq howmany? (tc (3, r2b’))
eq howmany? (tc (t4, r2b’))
eq howmany? (tc (t5, r2b’))
eq dir? (tc (t4, r2b’)) =1L .
eq dir? (tc (t5, r2b’)) =1 .
eq r2b = move (c2, r2b’) .
red where? (c2, r2b’) == where? (c2, r2b’) .

wm o
&m0l
n O OoOWn

o -

(=]

We have completed the verification that the two-
station system has the safety property.

)) Ts
W, TBE' . ’}5,;@—
2) Ta
B
12a) Osi 2b) p Te q
—|:>— T T T
T T ’

Figure 6: Unsafe but unreachable states.

4 Related Work

Block systems are the principal concept for safety
assurance on railroad domain. In [3], Cichoki and
Gorski describe a formal specification of railroad sig-
naling systems in Z and show some safety propeties
and hazards on the railroad signaling system by using
FMEA (Failure Mode and Effect Analysis) analysis
techniques. -

In the railroad domain, to synthesize signals and
branches are called interlocking, and each station
needs an interlocking controller. There are many
works of applying formal methods for interlocking de-
sign. For example, Morley models interlocking logic
with higher order logic and implements his models and
a model checker in Standard ML [8]. He proves full-
automatically some safety properties about interlock-
ing with the models and the model checker. But it is
still difficult to prove properties interlocking for huge
stations.

Bjgrner et al model many functions in the railroad
domain and describe their requirements as widely as
possible. The domain models and requirement def-
initions are written both informally in English and
formally in the RAISE Specification Language(1] [2].

5 Conclusion

We have briefly described the specification of a single-
track railroad system in CafeOBJ, and the verification
of its signaling system that no collision between trains
occurs if trains run according to the signals.

References

[1] Bjerner, D., Braad, J. and Mogensen, K.: Models of railway
systems: Domain. Proc. of the 5th workshop on FMERAIL.
1999.

[2] Bjerner,D., Braad,J. and Mogensen,K.: Models of rail-
way systems: Requirements. Proc. of the 5th workshop on
FMERAIL. 1999.

[3] Cichocki, T. and Gorski, J.: Safety assessment of computer-
ized railway signaling equipment supprted by formal tech-
niques. Proc. of the 5th workshop on FMERAIL. 1999.

Diaconescu, R. and Futatsugi, K.: CafeOBJ report. World
Scientific. 1998.

Diaconescu, R., Futatsugi, K. and lida,S.: Component-
based algebraic specification and verification in CafeOBJ.
Proc. of FM’99. LNCS 1709 Springer. (1999) 1644-1663.

Goguen, J. and Malcolm, G.: A hidden agenda. To appear
in Theoretical Computer Science. Also available as Tech-
nical Report CS97-538. Comp. Sci.&Eng. Dept. Univ. of
Calif. at San Diego. 1997.

[7] Goguen,J., and Malcom, G.: Software engineering with

OBJ - algebraic specification in action. Advances in formal
methods Vol.2, Kluwer. 2000.

[8] Morley, M.: Safety assurance in interlocking design. Ph.D
thesis of Univ. of Edinburgh. 1996.

[9] Yoshitake,I. and Akimoto,Y: An explanation of driving
security facilities. Japan Railway Books inc. 1984.

4

5

6

— 273 —

