내용기반 검색을 위한 자연 영상의 칼라양자화 방법

Color Quantization of Natural Images for Content-Based Retrieval

  • 길연희 (부산대학교 컴퓨터공학과) ;
  • 김성영 (창원대학교 멀티미디어과) ;
  • 박창민 (성심외국어대학 경영정보과) ;
  • 김민환 (부산대학교 컴퓨터공학과)
  • 발행 : 2000.11.01

초록

내용기반 영상검색시스템에서 객체 단위로 영상을 검색하기 위해서는 영상에서 의미있는 객체를 추출하는 과정이 필수적이며, 이를 위해 영역 분할을 효율적으로 수행하기 위한 양자화가 선행되어야 한다. 일반적인 칼라 양자화 기법은 칼라 수를 줄이되 양자화 된 영상이 원시 영상과 가능할 비슷해 보이도록 하는 것을 목적으로 하지만, 영역 분할을 위한 칼라 양자화에서는 칼라의 표현보나는 의미있는 객체를 용이하게 추출할 수 있도록 양자화 하는 것을 목적으로 한다. 본 논문에서는 기존의 Octree 양자화 방법과 K-means 알고리즘의 장점을 조합하여 영역 분할에 용이한 양자화 결과를 얻을 수 있는 방법을 제안한다. 먼저, Octree 양자화 방법을 수행하여 얻어진 양자화 된 칼라들 중에서 시각적으로 유사한 칼라를 병합함으로써, Octree 양자화 방법의 단점인 강제 분할 문제점을 해결한다. 이어서, 병합 후의 양자화 된 칼라에 대해서만 K-means 알고리즘을 수행함으로써, 보다 빠른 시간 내에 영역 분할에 적합한 양자화 된 영상을 얻는다. 실험을 통해 제안한 방법의 효용성을 확인하였다.

키워드