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ABSTRUCT: This paper introduces the equivalent frequency response method (EFRM) into runoff analysis.
This EFRM originally had been developed to analyze dynamic behavior of nonlinear elements such as threshold
and saturation in control engineering . Many runoff models are described by nonlinear ordinary or partial
differential equations, This paper presents that these nonlinear differential equations can be converted into semi-
linear ones based on EFRM. The word of “ a semi-linear equation” means that the coefficients of derived

equations depend on average rainfall.

1 INTRODUCTION

It is well known that several runoff models such as diffusion and kinematic equation stem from Saint Venant
equation. R.Hamouda and M. Fujita (2000) propose an application of EFRM to these equations. In this paper,

we present an example of the application of EFRM to runoff analysis.
2. Nonlinear Runoff System and Equivalent Frequency Response Method

2.1 Lumped Parameter Runoff Model

First of all, consider a simple runoff model described by
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The following nonlinear equation is derived from eqs. (1) and (2).
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In order to derive the equivalent frequency transfer function, we assume that
r=r+Ade’” (5)
g=g+Ce'™ J: imaginary unit (6)

r,q : average rainfall and discharge (constants) @ : frequency A:constant (' complex number

The following approximations are adopted to express the nonlinear terms in eq.(2)
kg? = kX(‘_i’pl + 0 " ce /M) kyq®* = kZ(ZJﬁZ + Pz‘?pz_lcemr) )
By substituting eqs. (5),(6) and (7) into eqs. (1) and  (2), eq. (8) is obtained.
7= (1-0%:p:0" " 4 jokpg™ Jo = 4 ®

C/4 in eq.(8) denotes the equivalent frequency transfer function Z(jw) between r(¢) and gq(7).
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Gain and time lag functions are defined by
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Eq. (9) suggests the following differential equation as #(¢) = g(¢) relation.
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The nonlinear differential equation (4) is converted into a semi-linear differential equation (12). The word
“ semi-linear differential equation™ means that eq. (12) is not a completely linear differential equation since the
coefficients of eq. (12) are affected by rainfall input. As eq.(7) is an approximation, let us check its accuracy.
K.Hoshi and 1. Yamaoka (1982) gave coefficients of eq. (2) by lumping non-dimensional kinematic equations
(23).

Manning formula

P ] 02 i3 5/3
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1o AT E TR pr=p P {3/2 Chezy formula (13)

We assume that
r(t) = r+ Asin(ar) (14)
Fig. 1 shows a schematic relationship between sinusoidal rainfall input and discharge. The gain function is

defined by
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the vector locus (relationship between R,(Z) and /,(Z) in g NSNS D
eq. (9)), gain and time lag function. The solid lines denote  eq. e e e

(11). The black circles show the numerical results obtained from

eq. (4) and (14). The numerical agrees with the theoretical one. Fig. 1 Schematic relationship between

Eq. (12) is obtained on condition that the forcing term in eq. (4)  Sruscidal rainfall input and discharge output
is  a sinusoidal function such as that in eq. (5). Therefore, the input term in eq. (12) is limited to a sinusoidal

one. However, any time function can be expanded in the Fourier series expressed by

r(t) = r+ Z{a,, cos(nayt) ~ b, sin(nmot} (16)
) n=1
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Fig. 2 Second order storage function model
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We obtain eq. (19) from eqs. (11) and (16).

glt) =7+ Glneog a, costnay (¢ = T, (0 D} + by sinfneg (= T, (ng )] (19)

n=l
Fig. 3 shows a comparison of the solution of eq. (4) (solid line) and that of eq. (12) (dashed line) using rainfall

input as shown in Fig. 3 (A). The solutions are almost the same. 7, in egs. (17) and (18) equalizes to a
duration time of runoff (7, =3). We add that discharge obtained from eq. (19) completely coincides with the

solution of eq. (12).

0.5 1 1.5 2 2.5 3t
Fig.3 Comparison of eq. (4) with eq. (12)
Solid line: eq. (4) Dashed line: eq. (12)

2.2 Distributed Parameter Runoff Model

One of the runoff model describing propagation of shallow waves over a plane surface is the kinematic wave

equation.
%ltl+%=r 0=xg/ q = ah” (20)
H0,x)=0, g(0,x)=0 , A(r0)=0 , q¢(t,0)=0 (1)

Eq. (20) may be rewritten by introducing the following normalizing parameters. The capital letters such as
Qand H indicate a dimensional quantity corresponding to the small letter such as g and h.
h=h,H g=q,Q t=t.T x=x,X r=rR
P,/ - .
n=r  xe=l gu.=1 t,=(" | /)7 r:average rainfall 22

Eq. (20) is replaced by

%%%}Q: 0<x <] O=H" @3)
H0.X)=0, 000,X)=0, H(T,0)=0, O(T.0)=0 (24)
In order to derive the equivalent frequency transfer function between R(T) and ((T.1), we assume that
R(T) = R+ 4e”T , (25)
H(T.X)=H(X)+ B(X)e! T (26)
o, X) = 0(x)+C(x )M X))

H(X) and Q(X) denote the stationary components of H(T,X)and Q(T,X), respectively and satisfy eq.
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(28).

H{0)=0 , 00)=0
Eq. (29) is derived from eqs. (24), (26) ,(27) and  (28).
: ' Bl0)=0 , c(0)=0
The nonlinear term of eq. (23) is approximated by

O, X)=0(X)+C(X)e'™ = H + pHP™ ' B(X)e/T
H(X) and O(X) are

0(X)=FRx HX) = (Rx)"?

Eqgs. (23) and (25) give

—+jQB =4
ax

Eq. (33) is derived from eqs. (30),(31)and (32).

a.

= (RX)=PPC = 4 C()=0

The solution of eq. (33) is

Y RY) _

[ LRy P rax X [ LR

C(X)=de je g dxX,
0

The equivalent frequency transfer function between R(T) and Q(T,)) is defined by

) cQ) )
260y =Y o r @)+ 1,2
Q) I (2)+ j1(Z)
R(2) = Leos @RS Py a Lsin@RPPY  1,2) = Leos @RS Py - hsin@R Py

1
={=p)/ 1 —=(1-p)/ —(1-p)/
= feost@R"™ pX”de-_—-z—{]F](p,p+l,jQR( PPy F(pp+1-jQR " ”)}
0

1
—(1-p)/ / —(1-p}/ (1= p)/
= [sin(@R""” pX”de="%{1F1(P,P+1,jQR( PPy F(p,pr1-i0R " ,,)}
0

L : non-dimensional slope length (L =1)

where | F(a,b,z) denotes Kummer’s confluent hypergeometric function defined by

az ala+ 1)22 + a(a+1)a+ 2)z3

1Flabzy=1+—+
. b 2b(b+1)  3Mbb+1Nb+2)

If p=1 ineq. (23), eq. (40) is obtained.
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Re(2>=s—"‘§‘%

Im (2)=
Fig. 4 shows the vector locus of eq. (35). It is noticed that there are great differences between fig. 2 and fig. 4.

Fig. 5 shows the gain and time lag functions of eq. (35). The black circles in fig. 5 show the computational

results ( R =1) based on eqs. (14) and (23). The theoretically obtained gain and time functions agree with the
computational ones. It is impossible to obtain a differential equation from eq. (35) because R,(Z)

and [, (Z)are numerically calculated. Therefore, we define an equivalent impulse response function J(T)

calculated by
2 oo
J(T)=2= J‘Re (Z2) cos(QTYdQ 41)
T
0

Fig. 6 shows the equivalent impulse response function. The impulse response function of a linear kinematic

equation ( p =1 ) has a rectangular shape as shown in fig. 6. This means discharge is expressed by a moving

average of rainfall input.

T
o= [R@dr (42)
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Fig. 4 Vector locus of eq. (35)
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Eq. (42) leads to a fluctuated gain and time lag functions as shown in fig, 7. This tendency is preserved in the

gain and time lag functions for a nonlinear kinematic wave equation ( p =1.5).
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Fig. 6 Impulse response function
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3. Application of the Equivalent Frequency Response method to Runoff Analysis

It has been proved that nonlinear runoff equations, even those that are partial differential equations, can be
converted into a semi linear equations. It is possible to estimate the model’s equations and their coefficients
using the presented theory if observed hydrological data are available. The frequency transfer function between

effective rainfall and direct runoff is defined by

2wy =299 _ R (2)+ j1,2) 43)
)
R = [re ™ d =R+ 1, (R) QU= a0 dt = R,(0)+ 1, (©) a4)
0 0 _

r(1), g(#): effective rainfall and direct runoff
R(jw),0(jw): Fourier transformed functions of r(z) and g¢(r). respectively
R, (Y),1,(Y):real andimaginary parts of Y(jw)

Eq. (45) can be rewritten as
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R (VR R+ 1, (O) 1 (R)

__R(-!(Q)IHI(R)_IM(Q)RG(R) (45)
RIR)+ I3 (R)

RZ(R)+ I%(R)

R,(Z)= In(Z)=

It is possible to calculate the vector locus and the gain and time lag functions using eq. (45). Figs 8 and 9 (C),
(D) and (E) show the computed results using runoff data (Sept. 16, 1998) obtained at Maruseppu and
Engaru ,Yubetsu River , Hokkaido. (A) and (B) are runoff data. 'We assume that a second order differential

equation can be used to describe the runoff system with reference to fig. 2,
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Fig. 8 Computed results at Maruseppu, Yubetsu River

—1-8—



rt mmhr A gt mmhr B
% o
a0/
1.
T L S O.l / \
10 20 30 £OF 10 20 30 T
Ty c G. N
oy RN L
a 7 R 8

P
<
Lnl
\\
“~_
T
OO
. .
jy
H

. 1 hr

.1 hr

hr G

-Q -
5 |

i ' w 1 h
v .2 O

5 4&_‘_;_‘_, 4

I

Fig.9 Computed results at Engraru, Yubetsu River

- d’ - d
AL+ 1= (46)
Eq. (47) is derived from eq. (46).

1 1 L) afs(
G(C()) = = — TL (CL)) =—tan {"—'—T-—";“} (47)
o nef clnef 2 U-et /i)

fl(;) and f, (;) are
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1= _17 - 17 £ = tan (w7 ()} 48)
@ G(a)),/1+tan'{a)TL(aJ)} wG(w) 1+tan2{mTL (a))}

(F) and (G) in Figs. 8 and 9 (F) show
A and f,(r) " @ relation. Eq. (49)
describes only the low frequency runoff qg -2W7{\Maruseppu q;_l‘m?-ﬁ\mgaru
component. The same tendency is obtained 1 -lf / \ 1 jﬁ ’// \
at Kaise and Naka Yubetsu, Yubetus River. 0.8y TP 0. Ei/ T
Table 1 indicates obtained parameter 5 1015202530 ° 77 5 101520253035" 7
values. Fig. 10 shows a comparison of gt mmhr Kaisei gt mmhrNakarubetsu
observed discharge (solid line) and 2.‘;' ’/\ 2-2 /"\
computed one (dashed line) obtained from 1 1 / \\__\ T-p) H‘*\__\_
eq. (46). The simple runoff model 0'”‘“;; 0 040 cne 0 2—030‘4j‘5 jhar

described by eq. (46) approximates the

observed discharge. However, Fig. 10 Comparison of observed discharge with computed one

improvements are required as eq. (46)

covers only a narrow band of frequency range. Table 1 Coefficients of eq.(46)
Location £ (D) f2 (hr) Drainage Area
Maruseppu 26.1 8.9 802( kom?)
Engaru 33.0 9.5 958
Kaisei 48.3 12.8 1375
Naka Yubetsu 56.1 13.1 1452

4. Conclusion

This paper shows that EFRM is a useful tool for analyzing a nonlinear runoff system. Nonlinear differential
equations are converted into semi linear equations. This paper deals with a storage function model and a
kinematic wave equation. We have already derived equivalent impulse response functions of more complex
runoff models such as the Saint Venant equation and diffusion equation. It is possible to use these models

through EFRM.
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