Production of Abnormal Shape Eggs from the Silkworm Bombyx mori infected with Autographa californica Nuclear Polyhedrosis Virus Sang Mong Lee¹, Nam Sook Park¹, Hye Jin Park², Eun Young Yun³, Seok Woo Kang³, Keun Young Kim³, Hung Dae Sohn² and Byung Rae Jin² ¹Miryang National University, ²Dong-A University, ³Dept. of Sericulture and Entomology, The National Institute of Agricultural Science and Technology, RDA The female pupae of the silkworm, Bombyx mori, were injected with recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) expressing green fluorescent protein (GFP) by percutaneous inoculation. When the 4th day-old female pupae were injected with 1×10^7 or 2×10^7 forming units (pfu) of the recombinant AcNPV, silkworms significantly decreased egg number and egg weight. Furthermore, the shape of the eggs from the AcNPV-infected silkworms was divided into two types, normal and abnormal shapes. The percentage of abnormal shape eggs produced from the AcNPV-infected silkworms was 7.8% and 57.1% at 1× 10⁷ and 2×10⁷ pfu inoculation, respectively. PCR analysis of the genomic DNA extracted from the eggs revealed that gfp and AcNPV ecdysteroid UDP-glucosyltransferase genes were amplified from all of both normal and abnormal shape eggs. The results reveals that AcNPV DNA, and a gfp gene cloned into the AcNPV DNA, and a gfp gene cloned into the AcNPV genome, injected in pupal stage were transmitted to eggs and remained stable until at least next generation.