바이러스-메시 유전 알고리즘에 의한 퍼지 모델링

The Fuzzy Modeling by Virus-messy Genetic Algorithm

  • 최종일 (군산대 공대 전자정보공학부) ;
  • 이연우 (군산대 공대 전자정보공학부) ;
  • 주영훈 (군산대 공대 전자정보공학부) ;
  • 박진배 (연세대 공대 전기 및 컴퓨터공학과)
  • 발행 : 2000.11.01

초록

This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

키워드