FUZZY STRONGLY r-SEMICONTINUOUS NEIGHBORHOODS

SEOK JONG LEE AND JU HUI PARK

Department of Mathematics, Chungbuk National University Cheongju 361-763, Korea E-mail: sjlee@cbucc.chungbuk.ac.kr, topjh03@lycos.co.kr

ABSTRACT. In this thesis, we introduce and investigate the notions of a fuzzy strongly r-semineighborhood and a fuzzy strongly r-quasi-semineighborhood in fuzzy topological spaces which are generalizations of a fuzzy strongly semineighborhood and a fuzzy strongly quasi-semineighborhood, respectively.

1. Introduction and Preliminaries

Definition 1.1. ([6]) Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is called

- (1) a fuzzy r-open set of X if $\mathcal{T}(\mu) \geq r$,
- (2) a fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \geq r$.

Definition 1.2. ([3,6]) Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by

$$cl(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \le \rho, \mathcal{T}(\rho^c) \ge r \}.$$

and the fuzzy r-interior is defined by

$$\operatorname{int}(\mu, r) = \bigvee \{ \rho \in I^X : \mu > \rho, \mathcal{T}(\rho) > r \}.$$

Definition 1.3. ([6,7]) Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \operatorname{cl}(\rho, r)$,
- (2) fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such that $\operatorname{int}(\rho,r) \leq \mu \leq \rho$,
- (3) fuzzy r-preopen if $\mu \leq \operatorname{int}(\operatorname{cl}(\mu, r), r)$,
- (4) fuzzy r-preclosed if $cl(int(\mu, r), r) \leq \mu$.

Definition 1.4. ([5]) Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy strongly r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \operatorname{int}(\operatorname{cl}(\rho,r),r)$,
- (2) fuzzy strongly r-semiclosed if there is a fuzzy r-closed set ρ in X such that $\operatorname{cl}(\operatorname{int}(\rho,r),r) \leq \mu \leq \rho$.

Theorem 1.5. ([5])

- (1) Any union of fuzzy strongly r-semiopen sets is fuzzy strongly r-semiopen.
- (2) Any intersection of fuzzy strongly r-semiclosed sets is fuzzy strongly r-semiclosed.

Definition 1.6. ([5]) Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy strongly r-semiclosure is defined by

$$\operatorname{sscl}(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \leq \rho, \rho \text{ is fuzzy strongly } r\text{-semiclosed} \},$$

and the fuzzy strongly r-semiinterior is defined by

$$\operatorname{ssint}(\mu, r) = \bigvee \{ \rho \in I^X : \mu \geq \rho, \rho \text{ is fuzzy strongly } r\text{-semiopen} \}.$$

Definition 1.7. ([4,7]) Let x_{α} be a fuzzy point of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then a fuzzy set μ of X is called

- (1) a fuzzy r-neighborhood (fuzzy r-semineighborhood, fuzzy r-preneighborhood, respectively) of x_{α} if there is a fuzzy r-open(fuzzy r-semiopen, fuzzy r-preopen, respectively) set ρ in X such that $x_{\alpha} \in \rho \leq \mu$,
- (2) a fuzzy r-quasi-neighborhood (fuzzy r-quasi-semineighborhood, fuzzy r-quasi-preneighborhood, respectively) of x_{α} it there is a fuzzy r-open(fuzzy r-semiopen, fuzzy r-preopen, respectively) set ρ in X such that $x_{\alpha}q\rho \leq \mu$,

2. Fuzzy strongly r-semineighborhoods

We are going to define the concepts of a fuzzy strongly r-semineighborhood and a fuzzy strongly r-quasi-semineighborhood in a fuzzy topological space.

Definition 2.1. Let x_{α} be a fuzzy point of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then a fuzzy set μ of X is called

- (1) a fuzzy strongly r-semineighborhood of x_{α} if there is a fuzzy strongly r-semiopen set ρ in X such that $x_{\alpha} \in \rho \leq \mu$,
- (2) a fuzzy strongly r-quasi-semineighborhood of x_{α} if there is a fuzzy strongly r-semiopen set ρ in X such that $x_{\alpha}q\rho \leq \mu$.

Clearly, if μ is a fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} and $r \geq t$, then μ is also a fuzzy strongly t-semineighborhood (strongly t-quasi-semineighborhood) of x_{α} .

Theorem 2.2. Let (X, \mathcal{T}) be a fuzzy topological space and $r \in I_0$. Then a fuzzy set μ of X is fuzzy strongly r-semiopen if and only if μ is a fuzzy strongly r-semineighborhood of x_{α} for every fuzzy point $x_{\alpha} \in \mu$.

Theorem 2.3. Let (X, \mathcal{T}) be a fuzzy topological space and $r \in I_0$. Then a fuzzy set μ of X is fuzzy strongly r-semiopen if and only if μ is a fuzzy strongly r-quasi-semineighborhood of x_{α} for every fuzzy point $x_{\alpha}q\mu$.

Theorem 2.4. Let x_{α} be a fuzzy point in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then $x_{\alpha} \in \operatorname{sscl}(\mu, r)$ if and only if $\rho \circ \mu$ for all fuzzy strongly r-quasi-semineighborhood ρ of x_{α} .

Theorem 2.5. Let x_{α} be a fuzzy point in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then $x_{\alpha} \in \operatorname{ssint}(\mu, r)$ if and only if there is a fuzzy strongly r-semineighborhood ρ of x_{α} such that $\rho \leq \mu$.

Remark 2.6.

- (1) Every fuzzy r-neighborhood (r-quasi-neighborhood) of x_{α} is also a fuzzy strongly r-semi-neighborhood (strongly r-quasi-semineighborhood) of x_{α} .
- (2) Every fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} is also a fuzzy r-semineighborhood (r-quasi-semineighborhood) of x_{α} .
- (3) Every fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} is also a fuzzy r-preneighborhood (r-quasi-preneighborhood) of x_{α} .

Following examples show that their converses need not be true in general.

Example 2.7. Let $X = \{a, b\}$ and μ_1 and μ_2 be fuzzy sets of X defined by

$$\mu_1(a)=rac{3}{5}, \qquad \mu_1(b)=rac{1}{10};$$

and

$$\mu_2(a) = \frac{7}{10}, \qquad \mu_2(b) = \frac{9}{10}.$$

Define $\mathcal{T}: I^X \to I$ by

$$\mathcal{T}(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \ rac{1}{2} & ext{if} & \mu = \mu_1, \ 0 & ext{otherwise}. \end{array}
ight.$$

Then clearly \mathcal{T} is a fuzzy topology on X. Let x=b and $\alpha=\frac{1}{5}$. Then $x_{\alpha}\in\mu_{2}$ and μ_{2} is fuzzy strongly $\frac{1}{2}$ -semineighborhood but not fuzzy $\frac{1}{2}$ -neighborhood. Also μ_{2} is a fuzzy strongly $\frac{1}{2}$ -quasi-semineighborhood of x_{α} which is not a fuzzy $\frac{1}{2}$ -quasi-neighborhood of x_{α} .

Example 2.8. Let $X = \{a, b\}$ and μ_1 and μ_2 be fuzzy sets of X defined by

$$\mu_1(a) = \frac{1}{2}, \qquad \mu_1(b) = \frac{2}{5};$$

and

$$\mu_2(a) = rac{1}{2}, \qquad \mu_2(b) = rac{3}{5}.$$

Define $\mathcal{T}:I^X\to I$ by

$$\mathcal{T}(\mu) = \left\{ egin{array}{ll} 1 & ext{if} \ \mu = ilde{0}, ilde{1}, \ rac{1}{2} & ext{if} \ \mu = \mu_1, \ 0 & ext{otherwise}. \end{array}
ight.$$

Then clearly \mathcal{T} is a fuzzy topology on X. Let x=b and $\alpha=\frac{1}{2}$. Then $x_{\alpha}\in\mu_2$ and μ_2 is fuzzy $\frac{1}{2}$ -semineighborhood but not fuzzy strongly $\frac{1}{2}$ -semineighborhood. Also μ_2 is a fuzzy $\frac{1}{2}$ -quasi-semineighborhood of x_{α} which is not a fuzzy strongly $\frac{1}{2}$ -quasi-semineighborhood of x_{α} .

Let (X,\mathcal{T}) be a fuzzy topological space. For each $r \in I_0$, an r-cut

$$\mathcal{T}_r = \{ \mu \in I^X : \mathcal{T}(\mu) \ge r \}$$

is a Chang's fuzzy topology on X.

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. A fuzzy topology $T^r: I^X \to I$ is defined by

$$T^r(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \ r & ext{if} & \mu \in T - \{ ilde{0}, ilde{1}\}, \ 0 & ext{otherwise}. \end{array}
ight.$$

The next two theorems show that a fuzzy strongly semineighborhood[11] is a special case of a fuzzy strongly r-semineighborhood.

Theorem 2.10. Let x_{α} be a fuzzy point of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then a fuzzy set μ is a fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} in (X, \mathcal{T}) if and only if μ is a fuzzy strongly semineighborhood (strongly quasi-semineighborhood) of x_{α} in (X, \mathcal{T}_r) .

Theorem 2.11. Let x_{α} be a fuzzy point of a Chang's fuzzy topological space (X,T) and $r \in I_0$. Then a fuzzy set μ is a fuzzy strongly semineighborhood (strongly quasi-semineighborhood) of x_{α} in (X,T) if and only if μ is a fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} in (X,T^r) .

The product fuzzy set $\mu \times \rho$ of a fuzzy set μ of X and a fuzzy set ρ of Y is defined by

$$(\mu \times \rho)(x,y) = \mu(x) \wedge \rho(y)$$

for all $(x, y) \in X \times Y$.

Let (X, \mathcal{T}) and (Y, \mathcal{U}) be fuzzy topological spaces and $r \in I_0$. Then X is r-product related to Y if any fuzzy set μ of X and any fuzzy set ρ of Y,

$$\operatorname{cl}(\mu \times \rho, r) = \operatorname{cl}(\mu, r) \times \operatorname{cl}(\rho, r).$$

Let $\{(X_i, \mathcal{T}_i)\}_{i \in J}$ be a family of fuzzy topological spaces. Let $X = \prod X_i$ and $p_i : X \to X_i, i \in J$, denote the projection map. Let $(\mathcal{T}_i)_r$ denote the Chang's fuzzy topology on X_i for $i \in J$, $r \in I_0$. Let

$$\prod (\mathcal{T}_i)_r = \sup_{i \in J} p_i^{-1}((\mathcal{T}_i)_r)$$

be the Chang's fuzzy topology generated by $\{p_i^{-1}((\mathcal{T}_i)_r)\}_{i\in J}$ as a subbase. Let \mathcal{T} be the fuzzy topology generated by $\{\prod(\mathcal{T}_i)_r\}_{0\leq r\leq 1}$. That is

$$\mathcal{T}(\mu) = \bigvee \{ r \in I_0 : \mu \in \prod (\mathcal{T}_i)_\tau \}.$$

Then \mathcal{T} is called the product fuzzy topology on X and denoted by $\prod \mathcal{T}_i$.

Lemma 2.12. Let $r \in I_0$ and a fuzzy topological space (X, \mathcal{T}) be r-product related to a fuzzy topological space (Y, \mathcal{U}) . Then for any fuzzy set μ of X and any fuzzy set ρ of Y, $\operatorname{int}(\mu \times \rho, r) = \operatorname{int}(\mu, r) \times \operatorname{int}(\rho, r)$.

Theorem 2.13. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be fuzzy topological spaces and $r \in I_0$. If X is r-product related to Y, then the product $\mu \times \rho$ of a fuzzy strongly r-semiopen (strongly r-semiclosed) set μ in X and a fuzzy strongly r-semiopen (strongly r-semiclosed) in the product fuzzy topological space $X \times Y$.

REFERENCES

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 209-212.
- [4] E. P. Lee, Various kinds of continuity in fuzzy topological spaces, Ph. D. thesis, Chungbuk National University, 1998.
- [5] E. P. Lee and S. J. Lee, Fuzzy strongly r-semicontinuous maps, Proceedings of the Third Asian Fuzzy Systems Symposium (1998), 370-375.
- [6] S. J. Lee and E. P. Lee, Fuzzy r-semiopen sets and fuzzy r-semicontinuous maps, Proc. of Korea Fuzzy Logic and Intelligent Systems Society 7 (1997), 29-32.
- [7] S. J. Lee and E. P. Lee, Fuzzy r-preopen sets and fuzzy r-precontinuous maps, Bull. Korean Math. Soc. 36 (1999), 91-108.
- [8] S. J. Lee, E. S. Park and E. P. Lee, A generalization of a lattice fuzzy topology, Comm. Korean Math. Soc. 12 (1997), 113-126.
- P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J Math. Anal. Appl. 76 (1980), 571-599.
- [10] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
- [11] B. S. Zhong, Fuzzy strongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets and Systems 52 (1992), 345-351.