OPERATIONS ON FUZZY TOPOLOGICAL SPACES

박진한 · 박진근 · 박성준

Jin Han Park, Jin Keun Park and Seong Jun Park Division of Mathematical Sciences, Pukyong National University

ABSTRACT

In this paper we introduce the notion of fuzzy γ -open sets by using an operation γ on fuzzy topological space (X, τ) and investigate the related fuzzy topological properties of the associated fuzzy topology τ_{γ} and τ . And γ -T_i (i=0,1,2) separation axioms are defined in fuzzy topological spaces and the validity of some results analogous to those in fuzzy T_i spaces due to Ganguly and Saha [2] are examined.

1. Introduction

Using the concept of a fuzzy set, Chang [1] introduced a fuzzy topological space (for short, fts). Since then, many authors [2–7] have contributed to the development of this theory. Ganguly and Saha [2] introduced fuzzy T_i (i=0,1,2) spaces and investigated their properties.

In this paper, we introduce the concept of an operation γ on a fts (X,τ) and use this concept to define fuzzy γ -open sets and investigate the related fuzzy topological properties of the associated fuzzy topology τ_{γ} and τ . Also we define fuzzy γ -closure and τ_{γ} -closure and study their relation and properties. Finally, we introduce the notions of fuzzy γ - T_1 (i=0,1,2) spaces and characterize fuzzy γ - T_1 by the notion of fuzzy γ -closed or fuzzy γ -open sets.

A fuzzy point in X with support $x \in X$ and value α ($0 < \alpha \le 1$) is denoted by x_{α} . For a fuzzy set A of X, the notations $\operatorname{Int}(A)$, $\operatorname{Cl}(A)$ and 1-A will respectively stand for the fuzzy interior, fuzzy closure and complement of A. By 0_X and 1_X we will mean the

constant fuzzy sets taking on respectively the values 0 and 1 on X.

A fuzzy point x_{α} is quasi-coincident (in short, q-coincident) with a fuzzy set A, denoted by $x_{\alpha}qA$, if $\alpha + A(x) > 1$. A fuzzy set A is q-coincident with a fuzzy set B, denoted by AqB, if there exists $x \in X$ such that A(x)+B(x)>1. If A is not q-coincident with B, then we write $A \not qB$.

A fuzzy set A in a fts X is said to be a fuzzy q-nbd of a fuzzy point x_a in X if there exists a fuzzy open set B such that $x_a q B \le A$.

2. Fuzzy γ -open sets

In this section we define the notion of an operation γ and fuzzy γ -open sets by using an operation γ on fts (X, τ)

Definition 2.1. Let (X, τ) be a fts. An operation γ on fuzzy topology τ is a mapping from τ into fuzzy set I^X of X such that $V \leq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma: \tau \to I^X$.

The operators defined by $\gamma(G)=\operatorname{Int}(G)$, $\gamma(G)$ $=\operatorname{Cl}(G)$ and $\gamma(G)=\operatorname{Int}(\operatorname{Cl}(G))$ are examples of the operation γ .

Definition 2.2. A fuzzy set A of a fts (X, τ) is called a fuzzy γ -open set of (X, τ) if, for each fuzzy point $x_a \in A$, there exists a fuzzy open set U such that $x_a \in U$ and $U^{\gamma} \leq A$. τ_{γ} will be denoted the set all fuzzy γ -open sets. A fuzzy set B of (X, τ) is said to be fuzzy γ -closed in (X, τ) if 1-B is fuzzy γ -open.

Proposition 2.3. $\tau_{\gamma} \subseteq \tau$.

.. ---

Definition 2.4. Let γ be an operation on τ . Then γ is called:

(a) regular if for every fuzzy open neighborhood (in short, fo-nbd) U and V of each fuzzy point $x_{\alpha} \in X$, there exists a fo-nbd W of fuzzy point x_{α} such that $W^{\gamma} \leq U^{\gamma} \wedge V^{\gamma}$;

(b) open if for every fo-nbd U of each fuzzy point $x_{\alpha} \in X$, there exists a fuzzy γ -open set S such that $x_{\alpha} \in S$ and $S \leq U^{\gamma}$.

Example 2.5. Let $X=\{a, b, c\}$ and $\tau=\{0_X, A_1, A_2, 1_X\}$, where

$$A_1(a) = A_1(b) = 1, A_1(c) = 0,$$

 $A_2(a) = A_2(c) = 0, A_2(b) = 0.5.$

Let $\gamma \colon \tau \to I^X$ be an operation defined by γ $(B)=\mathrm{Cl}(B)$, and let $\delta \colon \tau \to I^X$ be an operation defined by $\delta(B)=\mathrm{Int}(B)$. Then we have $\tau_{\gamma}=\{0_X,1_X\}$ and $\tau_{\delta}=\tau$. It is easy to see that γ is regular but it is not open on (X,τ) , and δ is regular and open on (X,τ) .

Example 2.6. Let $X=\{a, b, c\}$ and $\tau=\{0_X, A_1, A_2, A_3, A_4, 1_X\}$, where

$$A_1(a) = A_1(b) = A_1(c) = 0.7,$$

$$A_2(a) = A_2(c) = 0.7, A_2(b) = 0.3,$$

$$A_3(a) = A_3(c) = 0.3, A_3(b) = 0.7$$
 and

$$A_4(a) = A_4(b) = A_4(c) = 0.3.$$

Let $\gamma \colon \tau \to I^X$ be an operation defined by

$$\gamma(A) = A^{\gamma} = \begin{cases} 1_X & \text{if } A = A_4 \\ \text{Cl}(A) & \text{otherwise.} \end{cases}$$

Then the operation $\gamma \colon \tau \to I^X$ is open but not regular on τ .

Proposition 2.7. Let $\gamma: \tau \to I^X$ be a regular operation on τ .

- (a) If A and B are fuzzy γ -open, then $A \ B$ is fuzzy γ -open.
- (b) τ_{γ} is a fuzzy topology.

Remark 2.8. In general, τ_{γ} is supra fuzzy topology but not fuzzy topology on X.

Example 2.9. Let (X, τ) be a fts in Example 2.6. Then A_2 and A_3 are fuzzy γ -open sets but $A_2 \wedge A_3$ is not fuzzy γ -open. τ_{γ} is supra fuzzy topology but not fuzzy topology.

Now, we define the notion of γ -closure of a fuzzy set of a fts (X, τ) as follows:

Definition 2.10. (a) A fuzzy point $x_{\alpha} \in X$ is in the γ -closure of a fuzzy set A of fts X if $U^{\gamma}qA$ for each fo-q-nbd U of x_{α} . The γ -closure of a fuzzy set A is denoted by $\operatorname{Cl}_{\gamma}(A)$.

(b)
$$\tau_{\gamma}$$
-Cl(A)= $\bigwedge \{F : F \ge A, 1 - F \in \tau_{\gamma}\}$.

Proposition 2.11. For each fuzzy point x_{α} in $X, x_{\alpha} \in \tau_{\gamma}$ -Cl(A) if and only if $V \neq A$ for any $V \in \tau_{\gamma}$ such that $x_{\alpha} \in V$.

Remark 2.12. Let $\gamma: \tau \rightarrow I^X$ be an operation on τ and A be a fuzzy set of X.

- (a) $A \le Cl(A) \le Cl_{\gamma}(A) \le \tau_{\gamma} Cl(A)$.
- (b) The fuzzy set Cl(A) is fuzzy closed in (X, τ) .
- (c) If γ is open, then $\operatorname{Cl}_{\gamma}(A) = \tau_{\gamma} \operatorname{Cl}(A)$ and $\operatorname{Cl}_{\gamma}(A)$ is fuzzy γ -closed in fts (X, τ) (i.e. $\operatorname{Cl}_{\gamma}(\operatorname{Cl}_{\gamma}(A)) = \operatorname{Cl}_{\gamma}(A)$).

In the Remark 2.12, $\operatorname{Cl}_{\gamma}(A)$ is proper subset of τ_{γ} - $\operatorname{Cl}(A)$ as the following example.

Example 2,13. Let $X=\{a, b, c\}$ and $\tau=\{0_X, A_1, A_2, A_3, 1_X\}$, where

$$A_1(a) = 1$$
, $A_1(b) = A_1(c) = 0$,

$$A_2(a) = A_2(c) = 0$$
, $A_2(b) = 1$, and

$$A_3(a) = A_3(b) = 1, A_3(b) = 0.$$

Let $\gamma \colon \tau \to I^X$ be an operation defined by γ $(B)=\operatorname{Cl}(B)$. Take $B=A_1$. Then $\operatorname{Cl}_{\gamma}(A_1)$ is proper subset of $\tau_{\gamma}-\operatorname{Cl}(A_1)$.

Theorem 2.14. For a fuzzy set A of (X, τ) , the following are equivalent:

- (a) A is fuzzy γ -open in (X, τ) .
- (b) $Cl_{x}(X-A) = X-A$.
- (c) τ_{γ} -Cl(X-A) = X-A.

Remark 2.15. $\operatorname{Cl}_{\gamma}(\operatorname{Cl}_{\gamma}(A)) \neq \operatorname{Cl}_{\gamma}(A)$. (See Example 2.13.)

Lemma 2.16. If γ is regular operation, then $\operatorname{Cl}_{\gamma}(A \bigvee B) = \operatorname{Cl}_{\gamma}(A) \bigvee \operatorname{Cl}_{\gamma}(B)$.

From the Remark 2.12 and Lemma 2.16, we notice:

Corollary 2.17. If γ is regular and open on (X, r), then the operation $\operatorname{Cl}_{\gamma}$ satisfies the Kuratowski closure axiom. i.e.,

 $\tau_{\gamma} = \{A \in I^X : \operatorname{Cl}_{\gamma} (1 - A) = 1 - A\}$ is fuzzy topology on X.

3. Fuzzy $\gamma - T_i$ spaces (i=0,1,2)

In this section we investigate general operator approaches of fuzzy T_i (i=0,1,2) spaces due to Ganguly and Saha [2].

Definition 3.1. A fts (X, τ) is called fuzzy γ -T₀ if for any of distinct points x_{α} and y_{β} :

Case I. When $x \neq y$, x_{α} has a fo-nbd U such that $y_{\beta} \not\in U^{\gamma}$, or y_{β} has a fo-nbd V such that $x_{\alpha} \not\in U^{\gamma}$.

Case II. When x = y and $\alpha < \beta$ (say), there exists a fo-q-nbd U of x_{α} such that $y_{\beta} \notin U^{\gamma}$.

Definition 3.2. A fts (X, τ) is called fuzzy γ -T₁ if for any of distinct points x_{α} and y_{β} :

Case I. When $x \neq y$, x_{α} has a fo-nbd U and y_{β} has a fo-nbd V such that $x_{\alpha} \not\in V^{\gamma}$ and

 $y_{\beta} \not\in U^{\gamma}$.

Case II. When x = y and $\alpha < \beta$ (say), there exists a fo-q-nbd V of y_{β} such that $x_{\alpha} \notin V^{\gamma}$.

Definition 3.3. A fts (X, τ) is called fuzzy γ -T₂ if for any of distinct points x_{α} and y_{β} :

Case I. When $x \neq y$, x_{α} and y_{β} have fonds U and V such that $U^{\gamma} \not\in V^{\gamma}$.

Case II. When x = y and $\alpha < \beta(\text{say})$, x_{α} has a fo-q-nbd U and y_{β} has a fo-q-nbd V such that $U^{\gamma} \not \in V^{\gamma}$.

Remark 3.4. From above Definition 4.1-4.3 and Definition 3.1, 3.3 and 3.5 in [2], we obtain the following diagram:

Theorem 3.5. A fts (X, τ) is fuzzy γ -T₀ if and only if for any pair of distinct fuzzy points x_{α} and y_{β} , either $x_{\alpha} \notin \operatorname{Cl}_{\gamma}(y_{\beta})$ or $y_{\beta} \notin \operatorname{Cl}_{\gamma}(x_{\alpha})$.

Theorem 3.6. A fts (X, τ) is fuzzy γ - T_1 if and only if every singleton fuzzy set is fuzzy γ -closed in (X, τ) .

Throughout the rest of this section let (X, τ) and (Y, σ) be fuzzy topological spaces, and let $\gamma \colon \tau \to I^X$ and $\beta \colon \sigma \to I^X$ be operations on τ and σ , respectively.

Definition 3.7. A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be fuzzy (γ, β) -continuous if for each fuzzy point x_{α} in X and each fo-q-nbd V of $f(x_{\alpha})$, there exists a fo-q-nbd U of x_{α} such that $f(U^{\gamma}) \leq V^{\beta}$.

Proposition 3.8. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a mapping.

- (a) f is fuzzy (γ, β) -continuous.
- (b) $f(\operatorname{Cl}_{\gamma}(A)) \leq \operatorname{Cl}_{\beta}(f(A))$ hold for every fuzzy set A of X.
- (c) For any fuzzy β -closed set B of fts Y, $f^{-1}(B)$ is fuzzy γ -closed in fts X (i.e., for

any $U \in \sigma_{\beta}$, $f^{-1}(U) \in \tau_{\gamma}$). Then (a) \Rightarrow (b) \Rightarrow (c) hold.

Remark 3.9. (a) In Proposition 3.8, if Y is fuzzy β -regular, then (c) implies (a) and hence (a), (b) and (c) are equivalent to each other.

(b) In Proposition 3.8, if β is an open operation, then (b) implies (a) and hence (a) and (b) are equivalent to each other.

Recall that a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be fuzzy continuous[3] if for each fuzzy point x_{α} in X and each fo-q-nbd V of $f(x_{\alpha})$, there exists a fo-q-nbd U of x_{α} such that $f(U) \leq V$.

The following two examples show that fuzzy (γ, β) -continuity and fuzzy continuity are independent concept.

Example 3.10. Let X = Y = [0, 1] and $\tau = \sigma = \{1_X, 0_X, A\}$, where

$$A(x) = \begin{cases} 1/3 & \text{if } x = 0 \\ A(x) = 0 & \text{if } x \neq 0, \end{cases}$$

for each $x \in [0, 1]$.

Consider the identity mapping $f:(X,\tau) \rightarrow (Y,\sigma)$ and define $\gamma:\tau \rightarrow I^X$ by $U^{\gamma}=\operatorname{Cl}(U)$ for any $U \in \tau$ and $\beta:\sigma \rightarrow I^X$ by $G^{\beta}=\operatorname{Int}(\operatorname{Cl}(G))$ for any $G \in \sigma$. Then f is fuzzy continuous mapping but not fuzzy (γ,β) -continuous

Example 3.11. Let X be non-empty set, and let $f: X \rightarrow X$ be a identity mapping. Let a be fixed element of X, and σ the fuzzy topology on X given by $\sigma = \{1_X, 0_X, A\}$, where

$$A(x) = \begin{cases} \alpha \ (> \frac{1}{2}) & \text{if } x = a \\ 0 & \text{if } x \neq a. \end{cases}$$

Let τ be any fuzzy topology on X such that $f:(X,\tau)\to (X,\sigma)$ is not fuzzy continuous (obviously such fuzzy topology exist). Define $\gamma\colon \tau\to I^X$ by $U^\gamma=\operatorname{Cl}(U)$ for any $U\in \tau$ and $\beta\colon \sigma\to I^X$ by $G^\beta=\operatorname{Int}(\operatorname{Cl}(G))$ for any $G\in \sigma$. Then f is fuzzy (γ,β) -continuous mapping but not fuzzy continuous.

Proposition 3.12. Let $f: (X, \tau) \to (Y, \sigma)$ be a fuzzy (γ, β) -continuous injection. If fts Y is fuzzy β - T_1 (resp. fuzzy β - T_2), then fts X is fuzzy γ - T_1 (resp. fuzzy γ - T_2).

Theorem 3.13. (a) Suppose that γ is regular. If (X, τ_{γ}) is a fuzzy T_2 space, then (X, τ) is a fuzzy γ - T_2 space.

(b) Suppose that γ is regular and open. If (X, τ) is a fuzzy γ -T₂ space, Then (X, τ_{γ}) is a fuzzy T₂ space.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] S. Ganguly and S. Saha, On separation axioms and T_i-Fuzzy continuity, Fuzzy Sets and Systems 16 (1985), 265-275.
- [3] P. P. Ming and L. Y. Ming, Fuzzy topology. II. Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37.
- [4] M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990), 245-254.
- [5] J. H. Park, Generalizations of fuzzy continuous mappings between fuzzy topological spaces, *Dong-A University*, *Ph D.*
- [6] J. H. Park, J. R. Choi and B. Y. Lee, On fuzzy θ-continuous mappings, Fuzzy Sets and Systems 54 (1993), 107-113.
- [7] S. Saha, Fuzzy δ-continuous mappings, J. Math. Anal. Appl. 126 (1987), 130-142.