Improving Web Personalization Service Using Web Mining and Collaborative Filtering

웹 마이닝과 협력적 정보 여과를 이용한 개인화 서비스의 성능 개선 방안

  • 이치훈 (인하대학교 전자계산공학과) ;
  • 고세진 (인하대학교 전자계산공학과) ;
  • 김용환 (인하대학교 전자계산공학과) ;
  • 이필규 (인하대학교 전자계산공학과)
  • Published : 2000.10.01

Abstract

웹 개인화 기술의 발달은 많은 업체들이 기존 고객의 유지와 신규 고객의 확보를 위한 수단을 제공하였다. 현재의 개인화 기술은 크게 내용 기반 그리고 협력적 정보 여과 방식에 기반한 기술로 나뉘어질 수 있다. 내용 기반 정보 여과 방식에 기반한 개인화 기술은 멀티미디어 정보로 표현된 대부분의 웹 오브젝트(페이지, 이미지, 동영상, 사운드, 상품 등)에는 적용하기 어렵고, 협력적 정보 여과방식은 Cold Start Problem과 단일 도메인내에서의 개인화 서비스만이 가능하다는 문제점이 있다. 본 논문에서는 협력적 정보 여과 방식과 데이터 마이닝 기술 중의 연관 규칙 생성 방법을 혼합한 웹 개인화 시스템을 제안한다. 다양한 멀티미디어 형태로 표현되는 웹 오브젝트의 내용 분석이 어려우므로, 각각의 오브젝트를 하나의 아이템으로 인식하고 개인화 서비스를 시도하는 협력적 정보 여과 방식을 채택하였다. 협력적 정보 여과의 결과로 발견된 도메인별 유사 사용자의 웹 오브젝트 사용 정보를 연관 규칙 생성 알고리즘에 적용하여 오브젝트간의 연관성을 발견한다. 발견된 오브젝트간의 연관성은 서로 다른 정보 도메인의 오브젝트가 현재 사용자에게 흥미있는 것인가를 예측할 수 있는 자료로서 사용될 수 있다. 협력적 정보 여과 방식에 의해 생성된 오브젝트의 선호도값과 오브젝트 연관성 정보를 비교하여 사용자에게 개인화된 웹 서비스를 제공한다.

Keywords