A Concurrency Control Scheme over T-tree
in Main Memory Databases with Multiversion

*Ying Xia! Sook-Kyoung Cho' Young-Hwan Oh' June Kim®> Hae-Young Bae'
! Dept. of Computer Science & Engineering, Inha University
2 Dept. of Internet Service, Computer & Software Technology Lab., ETRI
£1992131@inhavision.inha.ac.kr

Abstract

In this paper, we present a concurrency control scheme over the index structure in main memory databases using multiversion
mechanism, and implement it on T-tree. As a well-known idea for concurrency control, multiversion allows multiple transactions
to read and write different versions of the same data item, each transaction sees a consistent set of versions for all the data items it
accesses [1]. Logical versioning and physical versioning techniques are used to keep versions of data item and versions of index
node respectively. The main features of this multiversion indexing approach are (1) update operations and rotations on T-tree can
take place concurrently, (2) the number of locking and latching requirement is sharply reduced because read-only transactions do
not obtain any locks or latches and update transactions obtain latches only when actually performing the update, (3) it reduces
storage overhead for tracking version and reclaims storage in time, and (4) it provides complete isolation of read-only transactions
from update transactions, so the read-only transactions can get response information without any block.

1 Introduction

Since disk access in main memory database system is only
needed for logging, in concurrent environment, what dominates the
cost of database access and effects system response time is latching
and locking, because they might cause other transactions blocked
[7]. Here, we use multiversion technique to reduce such cost and
provide unblocked data access for read-only transactions and
highly concurrent execution level for update transactions.

Logical versioning is applied to data item. New version is created

only when data is updated, the overhead of versioning space is
zero. As for which version should be read is decided by timestamp
of the transaction. No locking is needed when read-only
transactions access a data item.

Physical versioning is applied to index structure. When index
structure is updated, a new version of all affected nodes are created
and linked in the tree. It enables read-only transactions to traverse t
he index structure without acquiring latches even when other
transactions is updating on it. Update transactions also do not get
latches during it traversals the index structure until the node that
actually update is performed on.

Here, we assume that relations have only a single primary key
index and zero or more secondary key indices, and the primary kéy
values cannot be updated

The rest of the paper is organized as follows. Section 2 explains
the multiversion technique implemented in our design. Section 3
gives the algorithms of concurrent operations on the T-tree with
versioning. Conclusions are shown in Section 4.

2 Multiversion on T-tree

In system with multiversion, transactions are classified at startup
time as read-only transactions (which includes only read items) and

*This Research is supported by Ministry of Information and
Communication under work of university S/W research center and
by ETRI under work of High Performance Real-time DBMS.

210

update transactions (which will update or write some items or
which simply want access to the most current data). Each
transaction is assigned a timestamp when it starts [1].

2.1 Logical versioning

Logical versioning is the versioning applied to data items. When
a transaction updates a data item, a new version of that item is
created. When transaction commits, a logical timestamp (LTS) is
obtained. The transaction stamps each version it has created with
this LTS.

A version list is defined in which all entries are doubly linked
and ordered by LTS. Each entry of version list includes a LTS and a
pointer pointing to the version data.

For each item, read-only transaction reads the latest version
whose LTS is less than or equal to its timestamp.

A version of a data item will be deleted when it is no longer
needed by any read-only transaction which has a timestamp equal
to or larger than LTS of the version, but smaller than LTS of the
next newer version of the item.

T-tree

Items

ointer to an item

Pointer to an entry
of a version list

LTS i+1
L

LTS;

LTS;.4

Version list of an item

(Figure 1. pointers to data items)

In T-tree, data pointer in the tree node could be point to a data
item if there is only one version or to a version entry if there are
many versions. When an update transaction commits, pointers in
tree node is updated to point to the new version entry. As Figure 1
shows, the transaction, which create the new version stamped as



20009% =R EANSS 75

et E=74 Vol. 27. No. 2

LTS;,,, is still not commit.

When traverses T-tree, if the pointer point to an item directly,
then return this pointer. Else, version list of the item is traversed to
determine an entry with the largest LTS less than or equal to the
transaction timestamp, and return this version entry pointer.

2.2 Physical versioning

Physical versioning is the versioning applied to index structure,
here refers to nodes in T-tree. A new version of a tree node is
created only when a key is involved in insertion, deletion, or
rotation. No new version is created if there is only a directly
updating performed on a node.

Let N be the root of nodes set affected by an operation, physical
versioning first copy these nodes and let N’ as new root while
change pointers to the nodes in original nodes set to point to new
copies, then update are performed on the new copy, finally
atomically change the pointer to N to point to N°. By doing so,
what read-only transactions read is always the final update before it
starts but not partial updates.

In T-tree, each node contains a version bit to indicate if the node
is (physically) versioned. A physical timestamp (PTS) of the node
is obtained after it is versioned. After linking a newer version of a
node into the tree, mark the version bit of this nodes as 1, and
append an entry containing a pointer to the node and its PTS into a
physical version list. Figure 2 shows the four steps of physical
versioning,.

N
(a) a set of nodes affected (b) a copy of these nodes

i N

@) il
7NN >

Q) e O 1

o 8 P
Physical Version list

Nodes
(d) old nodes are versioned

(c) link the copy to tree
after updating on it

(Figure 2. four steps of physical versioning)
Once there is no timestamp of update transaction is smaller than
the version’s PTS, the older physical version will be deleted.

3 Operations on T-tree with multiversion

3.1 Search

As a basic operation, Search can be called by reader or invoked
by insert, delete or update. We design a general Search algorithm
which includes two important parameters: (1) lock-mode, a flag
which indicates whether or what next-key lock (exclusive or
shared) should be obtained on the key value returned by Search,
and (2) latch-mode, a flag which if True indicates that the
terminating node (bounding node or a leaf or a semi-leaf node that
should contain the key) holds exclusive latch and the tree holds
shared latch. A stack is used to record ail nodes on access path.
Search will get the proper version of data. It is relatively simple,
here we ignore the details, refer to [4,5].

When Search is called on behalf of a read-only transaction, fock-
mode is None, latch-mode is False. While, when Search is called
on behalf of an updaie transaction, lock-mode is Shared, latch-

mode is False. Whether called on behalf of updaters or readers,
Search does not obtain latches on its way down and does not check
if a node has been versioned until reaching the terminating node.

When Search is invoked in update transactions, as figure 2
depicts, after Search return, three levels of locking and latching is
involved, they are latch on tree, latch/lock on node and lock on data
item. If lock is needed, lock is obtained before latch is obtained to
prevent deadlocks [6]. After obtaining appropriate locks and latches,
validation is performed by checking if node has been versioned to
determine if the key value is indeed the key value to be returned
because the concurrent updaters may have inserted or deleted index
entries while Search was obtaining locks or latches.

S tree latch when insert/delete/update

X latch on node when insert/delete/ update
X next-key lock on key when insert/delete

X lock on item when inseri/delete/update

Items
(Figure 3. different locks/latches for different
update operations after Search return)

3.2 Insert

Insert a key first invokes Search with the key to insert, lock-
mode is Exclusive, latch-mode is True. This ensures that an
exclusive next-key locking in the index is obtained in order to
avoid phantom problem and support repeatable read [6], and an
exclusive latch on the node involved in insert is also held. Let N be
the exclusively latched node after Search, three cases should be
considered:

Case 1: N bounds key and has room. A copy of N, say N’, is
created and key is inserted into it. Then exclusive latch on N’s
parent and check if it has versioned. If so, release latch, re-traverse
the tree from root to N to determine N’s most current parent and
latch it. Repeat this process until N’s parent is found to be not
versioned. Then the pointer to N is updated to point to N’. N then is
versioned and all latches released.

Case 2: N does not bound key. In this case the node is a leaf or a
semi-leaf. If there is room in N, then key is inserted as described in
Case 1. Else, a new node which containing key is allocated, an
exclusive latch on the node is obtained and the left or right child of
N is set to point to the newly allocated node.

Case 3: N bounds key but no room. If the left child of N is null,
then two node N1 and N2 are allocated and exclusively latched, N1
is a copy of N containing key but not containing the leftmost key in
N and the left child of N1 is set to N2, while N2 simply contains
the leftmost key in N. After exclusively latching N’s parent, the
pointer to N is updated to point to N1. N then is versioned and all
latches released.

If the left child of N is not null, release the latch on N, and obtain
exclusive tree latch. If N has been versioned or its left child has
become null in between, release tree latch and Insert restart again
by invoking Search from the highest but without been versioned
node in stack. Otherwise, the following actions are taken:

Let N1 be the node that contains the largest key value in the left

211



20004 E =R RHAYS] 7S U EEFA Vol. 27. No. 2

subtree of N. If N1 has room, then a copy of N1 is made, the
leftmost key value in N is inserted into the copy, change the pointer
in N1’s parent to point to the new version, and mark N1 as
versioned. If N1 has no room, then a new node containing only the
leftmost key value in N is allocated and N1’s right child is set to
point to the newly allocated node, and then new copy of N is made
but delete the leftmost key value, inserted the key and change N’s
parent’s pointer to N to point to the new copy, then node N is
versioned.

The lock on the key is released at the end of the insertion once
the key has been inserted.

3.3 Delete

Like Insert, Delete first invokes Search with the key to delete,
lock-mode equal to Exclusive and latch-mode equal to True.

If N is bounding node and contains more than the minimum
number of key values, then make a copy of N, delete key from the
copy and update the pointer to N in its parent to point to the copy,
finally mark N as versioned and release latch on N.

If deletion could cause the number of key values in N to be less
than the minimum number of key values, then release the latch on
N but obtain the tree latch in exclusive mode. Once the tree latch
has been obtained, if N has been versioned in between, release tree
latch and restart delete by invoking Search from the highest but
without been versioned node in stack, else one of the following
cases is considered:

Case 1: N is a leaf. If N contains a single key value, then
exclusively latch its parent and set the pointer to N as null. Else,
make a copy of N, and delete the key from the copy, update the
pointer t0 N in its parent point to the new copy, mark N as
versioned and release the tree latch.

Case 2: N has a left subtree. Let N” be the node in the left subtree
containing the largest key value. Copy all nodes in between N and

N°. If N’ contains more than one key, then also make a copy of N” -

and delete the largest key value from the copy. If N” has only a
single key value, exclusively latch N’s parent, then set the pointer
to N’ in the copy of N’s parent to null and release latch. In the copy
of N, delete requested key and insert the largest key value of N’.
Finally, update the pointer to N in N’s parent to the new copy of N,
mark node N, N’ and all nodes between N and N’ as versioned. The
tree latch is released if N’ contained more than one key because
rotation is not required.

Case 3: N has no left child and has a right child. Actions are
similar as Case 2. If necessary, rotations are performed until the
tree is balanced, the tree latch is held until all are completed.

3.4 Update

Update an index entry for a key value first invokes Search with
the key value, lock-mode is None, latch-mode is True. Once the
node containing the key value is exclusively latched by Search, the
" index entry is over-written by a new pointer, and then latch on the
node is released. No physical versioning is needed.

3.5 Rotate

Rotate is done by traversing the tree upwards from the lowest
unbalanced node. Details refer to [4]. If a exclusively tree latch is
held, upwards traversal is performed and every time a parent node
is accessed, check if it is versioned, if so, the tree is re-traversed. If
the exclusively tree latch is not held, latch it before a parent node is
examined to determine if it can be rotated, if it has been versioned,

212

re-traversal the tree. While performing a rotation, physical
versioning only requires that three nodes involved in the rotation is
copied.

4 Performance and Conclusions

We did a simulation work to compare the performance of this
approach with that of two-phase lock protocol over T-tree. We
assume that each transaction is a set of 1000 accessing operations
in which 30% are update and the others are read-only. As Figure 4
depicts, by using our approach, 1) the mean response time is
shorter than that of the two-phase lock protocol at number of
parallel transaction, which means we can serve more users at a
means response level. And 2) the respdnse time values are
distributed in a narrow value range than that of two-phase lock
protocol, which means transaction do not block each other. This
scheme is especially suitable for applications which involving
many read-only transactions.

Mean
response
time
(sec.)

= DN WOl

5 10 15 20

Number of parallel transactions

=== Our approach
—— Two-phase lock protocol

(Figure 4. Comparison of the performance of our
approach with that of two-phase lock protocol)

5 References

[1] P. M. Bober and M. J. Carey Indexing Alternatives for
Multiversion Locking. In Proc. of the 4™ International Conf. on
Extending Database Technology. 1994

[2] P. Bohannon, D. Lieuwen, R. Rastogi, S. Seshadri, A.
Silberschatz and S. Sudarshan. The architecture of the Dali main-
memory storage manager. In Journal of Multi-media Tools and
Applications, 4/2, 1997,

[3] V. Gottemukkala, T. J. Lehman. Locking and Latching in a
Memory-Resident Database System. In Proc. of the 18" VLDB
conf. 1992

[4] T. ). Lehman and M. J. Carey. A study of index structures for
main memory database management systems. In Proc. of the Int’]
Conf. on VLDB, 1986

[5] H. Ly, Y. Y. Ng, Z. Tian. T-Tree or B-Tree: Main Memory
Database Index Structure Revisited. In Institute of Electrical and
Electronics Engineers, Inc. 1998

[6] C. Mohan and F. Levine. Aries/IM: an efficient and high
concurrency index management method using write-ahead logging.
In Proc. of the ACM SIGMOD Conf. on VLDB, 1990

[7] R. Rastogi, S. Seshadri, P. Bohannon, D. Leinbaugh. Logical
and Physical Versioning in Main Memory Databases. In Proc. of
the 23 VLDB conf. Athens, Greece, 1997



