Electron Spin Resonance Study of Molybdenum Species Labelled with ⁹⁵Mo

Gern-Ho Back^a · Dong-geun Lee^a · Seung-chan Back^b

^a Catalyst, Thinfilm Laboratory, Department of Chemistry Changwon National

University.

^bDepartment of Chemistry-Biology, College of Natural Science, Kyungnam University.

A solid state ion exchange reaction of MoO_3 with as systhesized silicoaluminophosphate type 34 (SAPO-34) generates paramagetic Mo(V) species. After activation at 500 °C and under 100 Torr of H_2 reduction, showed ESR spectra at 77 K. However, subsequent dehydration and H_2 reduction result in Mo(V) species, subsequent activation result in formation of Mo(V) species which are characterized by ESR. The ESR results indicated by the oxomolybdenum species, such as $(MoO_2)^+$ or $(MoO)^{3+}$. The $(MoO_2)^+$ species seems to be more probable because of the following reasons. Since SAPO-34 has a low negative framework charge, more positive charged species, like $(MoO)^{3+}$ is not as easily stabilized.