Submerged Membrane Bioreactor Hybrid System for Wastewater Treatment using Porous Membrane

Young Moo Lee, Jin Kie Shim*

Submerged Membrane Bioreactor Hybrid System for Wastewater Treatment using Porous Membrane

Young Moo Lee, Jin Kie Shim*

School of Chemical Engineering, Hanyang University
*CP Technology Research Team, CPT R&D Center, KITECH

High Strength Wastewater Treatment using Submerged Membrane Bioreactor

The second of the second of the second of the second of

Experimental condition of membrane bioreactor

Working Volume21 LHRT $13 \sim 15 \text{ hr}$ SRT $15 \sim 40 \text{ days}$ MLSS $8,000 \sim 16,000$ Air flow rate $5 \sim 15 \text{ L/min}$ Influent CODcr $800 \sim 1,600 \text{ mg/L}$

Characterization of membrane

Type Plate & Frame

Filtration Suction or system Gravity

Pore size 0.4 µm

Material Synthetic resin

Effective 0.1 m^2 surface area

FE-SEM picture of membrane

Membrane bioreactors of rectangular type

Reactors	L(cm)	W(cm)	H(cm)	Vol.(L)	A_r/A_d	Air Bubble	Day of Operation
R1	40	13.5	39	21	0.219	fine bubble	0-247
R2	22	6	160	21	0.636	fine bubble	0-50
R3	22	10	115	26	0.288	coarse bubble	e 51-116

^{*} A_r cross-sectional area of the riser (upflow section of air bubble & air-lifted liquid)

A_d: cross-sectional area of the downcomer (downflow section of degassed liquid)

Feed composition of synthetic wastewater

				Unii ing/L
Component	Run 1	Run 2	Run 3	Run 4
Glucose	673 3	208 0	942 7	1077 3
Glutamic Acid	286 7	344 0	401 3	458 7
CH ₃ COONH ₄	220 0	264 0	308 0	352 0
NaHCO ,	666 7	666 7	666 7	666 7
NH ₄CI	33.3	40 0	46 7	53 3
KH ,PO 4	50 0	60 0	70 0	BQ 0
K ₂ HPO ₄	66 7	80 0	93.3	106,7
MgSO 47H 2O	26 7	32 0	37 3	42 7
MnSO4 H 2O	\$ 3	10 0	11 7	13 3
FeCl ₁ .6H ₂ O	1 3	16	1 9	2 1
CaCl 2H2O	16 7	20 0	23 3	26 7
NaCl	20 0	24 0	28 0	32 0
COD	1,000	1,200	1,400	1,600

Operation period and air flow rate of reactor 1-3

Operational sequence	day of operation				
(Reactor 1)	1-54	55-1	10	111-24	
suction	7min	8mi	n	8min	
idle	3mın	2m	ın	2min	
air flow rate	8L	151		10L	
Operational sequence		day of o	peration		
(Reactor 2-3)	1-5	50(RX2)	51-116(F	(X3)	
suction	•	7min	7mın		
idle	3	lmin	3min		
air flow rate	;	8L	10 L		

Lander St. Williams

Flux and TMP variation with time in reactor 1 > Around 130th day, TMP increasing → Due to sludge bulking (SVI increasing) > On 150th day, physical cleaning → Cleaning the membrane with the sponge → Within 4 days, fouling was observed > On 160th day, chemical cleaning → 0.3 wt% NaOCl and oxalic acid for 3 hours each →Within 20 days, fouling was observed ➤ On 160th day, chemical cleaning → 1 wt% NaOCl and oxalic acid for 3 hours each

Treatment of High Strength Nitrogen Wastewater by Submerged Hollow Fiber Membrane Bioreactor

Experimental conditions

\checkmark Operating conditions of MBR

Anoxic Volume (L)	5 ~ 15
Oxic Volume (L)	5 ~ 15
HRT (hr)	11 ~ 15
SRT (days)	20 ~ 30
Recirculation Rate	2Q ~ 6Q
Air Flow Rate (L/min)	15 ~ 20
MLSS (mg/L)	$6000 \sim 14000$
Period	≅ One year
Temperature (C)	20 ~ 27

National Research Laboratory for Membrane

√ Characterization of Membrane

Type Hollow Fiber

Filtration Intermittent filtration by suction

Pore Size 0.1 µm

Material Hydrophilized PE

Effective Surface Area 0.2 m²

Limiting Variables pH 2~12, below 40 °C

✓ Synthetic Wastewater	unit : mg/L	
BOD	900~1100	
CODcr	1200~1400	
T-N	200~300	
NH ₃ -N	175~280	_

(basis: COD 1,200 mg/l, T-N 200 mg/l)

Component	Concentration (mg/l)	
Glucose	808	
Glutamic acid	345	
CH₃COONH₄	265	
NaHCO ₃	750 - 2,000	
NH ₄ Cl	888	
KH ₂ PO ₄	60	
K ₂ HPO ₄	80	
MgSO ₄ 7H ₂ O	33	
MnSO ₄ ·H ₂ O	10	
FeCl ₃ ·6H ₂ O	3	
CaCl ₂ ·2H ₂ O	20	
NaCl	25	

National Research Laboratory for Membrane

MLSS variation of aeration tank with time

- > Yamamoto, K. et al.
- → Critical MLSS concentration : 30,000 ~ 40,000ppm for tannery and domestic wastewater
- Stabilization of MLSS
- → 10,000 ~ 14,000 ppm
- ➤ After 281st day
- → Feeding higher nitrogen loading
- → MLSS was reduced to 8,000ppm

Analysis of aeration tank/denitrification tank with recirculation rate

Influent condition CODer 1200, T-N 200

	Recirculation	6Q	4Q	2Q
 Denitrification	rate Aeration tank	90.2	82.7	72.7
rate(%)	Denitrification tank	85.5	78.3	82.0
COD _{cr} (ppm)	Aeration tank	20.0	16.6	10.4
	Denitrification tank	202	286	176
NO ₂ -N (ppm)	Aeration tank	10.5	1.4	2.5
	Denitrification tank	27.0	18.3	12.3
NO ₃ -N(ppm)	Aeration tank	19.8	30.4	45.4
	Denitrification tank	0.8	0.7	0.8

National Research Laboratory for Membrane

Food Wastewater Treatment using Pilot-scale Submerged Membrane Bioreactor

Specification of pilot-scale SMBR

Target Water Quality

	Influent	Effluent
Capacity	4000 L/day	4000 L/day
BOD	800 mg/L	10 mg/L
COD	250 mg/L	20 mg/L
SS	300 mg/L	N.O

30-40 mg/L

Membrane Characteristics

Туре	Plate & Frame		
Filtration System	Suction		
Pore size	0.4 <i>μ</i> m		
Flux	700 lmh at 1atm		
Material	Synthetic Resin		
Membrane area	12 m²		
Module No.	30 ea (0.4 m²/ea)		

National Research Laboratory for Membrane

< 10 mg/L

Operation condition of pilot-scale SMBR

Working volume	2.2 ~ 2.7 m3
HRT	12 ~ 24 hr
SRT	20 ~ 60 days
MLSS	6000 ~ 13000 ppm
Air flow	10 ~ 20 Nm³/hr
рН	5.8 ~ 7.5
Operational Sequence	Intermittent filtration
	by suction (8min., 2.5min)

Water quality of influent and effluent

	Range of	Average of	Range of	Average of	Removal
	influent	influent	effluent	effluent	Efficiency
SS	20 ~ 50	250	≑ 0	≒ 0	≒ 100
BOD	160 ~ 440	330	0.4 ~ 3.4	1.7	99.5
CODer	300 ~ 1200	700	1 ~ 21	6.5	99.1
N-T	16 ~ 46	33	16 ~ 34	24.7	25.2
ин _э –и	0.5 ~ 48	2.2	0.02 ~ 0.8	0.2	91.9
NO ₃ -N	13 ~ 43	28	14 ~ 34	20.5	26.8

National Research Laboratory for Membrane

Flux and TMP variation with time

Initial flux: 13 LMH

Effluent flow rate was controlled by a control valve and the inverter of the suction pump.

Until 35 days: stabilization term After 35 days: flux - 20 LMH After 100 days: flux decline was observed (15 ~ 16 LMH)

Until 100 days: TMP was gradually increased from 2 to 8 cmHg
After 100 days: TMP was steeply

ıncreased

