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ABSTRACT

Although there have been many investigations employing the continuous wavelet
transform for the analysis of dispersive waves, they seem to lack theoretical
justifications for the effectiveness of the continuous wavelet transform over other
time-frequency analysis tools such as the short-time Fourier transform. The goal
of this paper is to answer this question by investigating theoretically the
performance of the continuous wavelet transform and the short-time Fourier
transform in tracing rapidly time-varying flexural waves. As a specific example,
the performance of the two transforms is compared in a problem dealing with

flexural waves generated by an impact in a solid circular cylinder.

1. TIME-FREQUENCY ANALYSIS : CWT VS
STFT
1.1 Short Time Fourier Transform (STFT)
The short-time Fourier transform of a function f be-
longing to a finite-energy signal space L?(t) is defined

as (see Mallat (1)

~+00
S§f(u,8) = f(#)gq ¢(t)at
oo (1)
= f(t)g(t — u)e %tdt
with
Guc(t) = €¥g(t — u) (2

where * denotes the complex conjugate. The trans-
form Sf(u,£) can measure the behavior of f in
the neighborhood of time, u and frequency, £&. The
function g(t) in Eq.(1) is the window function, which
is assumed to be real and symmetric. For a given
window g(t) with the time spread o, and frequency
spread o,, the time and frequency spreads of the
modulated transfated window g, ¢(¢) are independent of
(u, £). This means that the short-time Fourier transform
has the same resolution across the time-frequency plane.
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Mallat (1] iifustrates the effectiveness of STFT in deal-
ing with signals having slowly varying instantaneous fre-
quencies such as linear and quadratic chirps.

The instantaneous frequency is defined as the positive
derivative of ¢(t)

(3)

where ¢(t) is the modulating phase for a real signal f(t)
having an amplitude a(t)

f(t) = a(t)e®

wnn(t) = B
(at) 2 0) (@)

1.2 Continuous Wavelet Transform (CWT)
The definition of the continuous wavelet transform is

-+-00
Wi (u,s) = /_ F(Eywe,,(t)dt

(5)
oo 1 ,t—u
= [ roZew e
with
1 t—u
thu,e(t) = ﬁ"’(T) (6)

The function 1(t) is called a mother wavelet satisfying
the admissibility condition (see Mallat 111
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where 3(w) is the Fourier transform of P(t).
The existence of the integral in Eq.(7) requires that

$(0) =0 (8

In order to see the advantage of WT over STFT, we
need to examine the tiling of WT in the time-frequency
pIane To this end, we assume that the center frequency
of 1/)(w) is n and that the time and frequency spreads of
Y(t) are a¢ and g, respectively. Since 1), ,(t) involves
scaling by s, we can show that the time and frequency
spreads of 1, , are so, and g, /s, respectively. We can
also show that the center of the corresponding Heisen-
berg box is located at (u,n/s).

The Gabor wavelet 1(t) is a complex-valued modu-
lated Gaussian function defined as

%(t) = eg(t) (92)

—t%/202

9(t) = (9b)

1
(Uz,r)l/4e

where 7 is the center frequency of the ¢(w) and ¢ is a
measure of the spread of 1)(¢). The shape of the Gabor
wavelet is controlled by the product G, of 5 and ¢

G, =an (10)
This parameter, which may be called the Gabor shap-
ing factor 12, affects significantly the time resolution of
the wavelet and thus the performance of the correspond-
ing wavelet transform. Although Eq. (8) requires that
G, — o0, the condition G, >> 1 suffices for actual nu-
merical computation. The Gabor wavelet satisfying this
condition can be an approximate analytic wavelet. Kim
and Kim [@ have reported the importance of an optimal
selection of "G, in the analysis of dispersive waves. In
this work, we will investigate theoretically the effect of
G, on the performance of the Gabor wavelet transform.

1.3 Ridge Method for instantaneous Frequency
Estimation

The spectrogram P, f(u,&) = [Sf(u,£)* and the
normalized scatogram %ow(u,ﬁ) = Wiy, s)?/s
(with & = 5/s) measure the energy of f in a time-
frequency neighborhood of (u,£). The ridge algorithm
[ computes instantaneous frequencies from the local
maxima of spectrogram and scalogram. The result of
the ridge analysis provides criteria to select windows for
STFT and mother wavelets for WT.

For the analysis, it is assumed that the signal f(t)
takes the following form:

f(#) = a(t) cos é(t) (11)

where a(t) and ¢(¢) are an amplitude and a time-varying
phase of f(t). The instantaneous frequency wing is de-
fined by Eq.(3).

STFT

It is convenient to introduce a scaling parameter s to
adjust the size of window g(2) such that

u)eift

1 t-
9s,u(t) = \/59( (12)
For the subsequent analysis, it is assumed that the
support of a real symmetric window is [—1,1], and
l§(w)] < §(0) for all frequencies w.
Using g,,u,¢(t) as the windowed Fourier atom, the
following resuit can be found

+o0
SF(u&) = / FO)8] (D)t -
13

= V24(w)e o069 (g(ofg - Gu)) + e, €)

Where (") denotes the differentiation with respect to its
own argument.

The corrective term, or the error term, e(u,§) is
bounded by

leu, €)] < €a,1 + €a2 + €42 + sup |g(w)| (14)
fwi2|se(u)]
with
< 8la(u)]
= Tatu) (152)
€a2 < &) (15b)

te{u—§,u+§) la(w)]

If %’% < 1, (this condition is satisfied in most engi-
neering applications),

€2<  sup &) (16)
telu—3,ut3]
The last term in Eq. (14) can be negligible if
5lé(u)] 2 Aw (17)

where Aw is the bandwidth of the selected window §(w).

At ridges, i. e., at £(u) = ¢(u), the spectrogram
Py(u,8) = |Sf(u,&)|* becomes maximum and ¢, ; is
given by

_ sla(w)
7 atw)

This term is negligible when Eq. (17) is satisfied. Thus
at ridge points

13(2s6(u))|

(18)

By(u,8) = [SF(,&)* = 5a*(W)(3(0) + €az + €52)*

(19)

In order to extract instantaneous frequencies accurately
by using the spectrogram, the following conditions must
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be met:

sla(2)|
€0 < €1
"= et g 41 1000 (20a)
2<  sup  Sp(t) <1
tefu—}u+s] (20b)
Aw
2«1 20¢
sé(u) (20¢)

WwWT
As in STFT, W f(u,s) for a signal f(t) given by
Eq.(11) can be expressed as

+o0
W f(u,s) = / FEys (bt o

= Lo o) ol ~ ) + e(,6)

where the corrective term e(u, £) is given by Eq.(14).
Following the same treatment used for the ridge analy-
sis of Ws(u,£), the normalized scalogram at the ridge
points, £ = ¢(u), is given by

2
£ Pufiung = L
1, s $(u) 2 2
= 38 @B = =7 + ewg)]
h
where 5= g

The corrective terms €, 2 and €4 2 become negligible
when

Llaw) _ 7 dw)
W) ~ p)p aw (23a)
. $(u)
£ldw)] = nm— «1 (23b)
Aw Aw
s—¢— = T <1 (23c)

In order to show the advantage of CWT over STFT,
we consider a damage detection problem in which bend-
ing waves are generated by an impact. This problem was
studied earlier by Kim and Kim [2].

2.1 Damage Detection Problem

Figure 1 (a) shows a simply-supported beam having
a cross section. The beam is excited by a steel ball
dropped at the center of the beam marked by A. The
experimentally estimated duration of the contact time
between the ball and the beam is to be about 85usec.
Bending strains generated by the impact are measured
by strain gages at the sampling rate of lusec at point
B.

(b} Close view at C

Figure 1: em«imentd setup for a solid circular
] ed by a steel ball at the center.
(Diameter : d = 2cm, Young's modulus :
E = 117.2GPa, Density : p = 8.90 » 10%g/m?3)

The beam has a small.cut at location C and Fig. 1 (bz
shows the shape and size of the cut. Kim and Kim [2
proposed a damage diagnostic technique based on the
continuous wavelet transform and this paper gives the
theoretical background for the success of the wavelet
transform.

2.2 Wave Propagation In Beams
The governing wave equations by the Timoshenko
beam theory are given by (see doyle (4]}

v Oy v

KAG[E;E el 52—: = pA—é—-t—i (243)
8y v ")
Els— + KGA[5 —¢]=pl 57 (24b)

where ¢ and z are the time and the axial coordinate.
The transverse displacement of the neutral axis and the
rotation of the normal of a beam denoted by v and ¥,
respectively.

Assuming the solution of Eq. (24) in propagating
wave form,

—i(hz~wt) (25a)

(25b)

v = ype
o= %e—i(kz—wt)
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the following dispersion relation can be found (see, e.
g.. Doyle (41}, which relates the wavenumber k and the
frequency w.

b= {30 + (W

(26)
£y O - Sty

In Eq. (26). cs,c, and g are defined as

_ [ _ [ke¢ _ [T
Cb:\/; Cyg = T q=\/; (27)

The arrival time of a wave signal is governed by the
group velocity C; defined as

dw

dk

2.3 Phase Analysis of Strain Signals
Assuming that the impact at A (see Fig. 1(a)) gener-

ates an ideal impulse, the captured signal at a location,
which is L cm apart from A, can be written as

Cy = (28)

(29)
— rk(w)woe—i(kL—wt+ 5)

where ¢Z(t) in Eq. (29) denotes the contribution of a
wave component having a circular frequency w. Note
that the magnitude g is independent of w since the
beam is assumed to be excited by an ideal impulse. The
radius of the beam is denoted by r in Eq. (29).

If the frequency of the strain signal arriving at t = ¢,
is denoted by w(t,). the corresponding phase ¢(¢,) and
magnitude a(t,) of the strain can be written as

B(ta) = w(ta)ta — k(w(ta))L - % (30a)
a(ta) = rk(w(ta)) (30b)

The instantaneous frequency d¢(t,)/dt, of the mea-
sured strain becomes

dp(ta) _ du(ta) L dk, dulta)
g, ar, et elte) - plemu L
dw(ts) dk
= S (e = olomwa D) + w(ta)
(31)

Since the arrival time of a wave component having w =
wg can be expressed as

L L dk
ta b Cg((da) - %%Iw=u° - Z}'Iw:wﬂL (32)
Eq. (31) can be simplified as
do(ta) _
dt, w(ta) (33)

Window Size s

05 1 15 2
Instantaneous Frequency(Hz) x1o*

Figure 2: The allowable window size for the
applicability of STFT (no window size satisfies all
the nessary condition for the frequency range of
interest.

Dropping the subscript @ in Eq.(33), we obtain:

$(t) = w(t) (34a)
é(t) = w(t) (34b)

where w(t) in Eq. (31) must be found by solving Eq.(32)
for a given arrival time.

2.4 The Applicability of STFT and CWT

To investigate the applicability of STFT and CWT
to the problem in consideration, it is remarked that the
bending wave components are accurately measured be-
low 30 kHz because of the excitation and measurement
method. Thus we are mainly concerned with the instan-
taneous frequency components in the range between 5
kHz and 20 kHz.

The applicability of STFT and CWT may be assessed
by examining how well the condition Eq. (20) for STFT
and the condition Eq. (23) for WT are satisfied.

STFT

In order to extract the instantaneous frequency ac-
curately from the ridges of STFT, the conditions stated
by Eqs. (20) must be met. To look for the size s of a
window g(t), Eqs. (20) is rewritten as

1
8K ) (35a)
1
> 5 (350)

Where the bandwidth Aw of §(w) is assumed to be O(1).
(For instance, Aw = 1.44 for the Hanning window whose
support is [—1, 1]).

Figure 2 shows the three curves representing Egs.
(35) where the abscissa is the instantaneous frequency.
It is clear that there is no window size s satisfying si-
multaneously the conditions given by Eqs. (35) for the
frequency range of interest. As a result, STFT can-
not accurately frame the time-varying instantaneous fre-
quencies of the strain signal.
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Figure 3: The allowable r of the center
frequency fmf

CWT

To obtain satisfactory results from CWT, the condi-
tions stated by Eqgs. (23) must be fulfilied. To look for
the center frequency 7 satisfying Eqs. (23), They are
rewritten as

n <K -ﬂfu-)— (36a)
o)
n>1 {(36b)

When a Gabor wavelet is employed for CWT, we may
set o = 1 without the loss of generality and thus 7 is
equal to G,.

Using Eqs. (36), one can plot Fig. 3 that shows
the allowable region for the center frequency n of the
mother wavelet. Figure 3 clearly shows the advantage
of CWT. Unlike STFT, there exists a range of 7 satis-
fying all the necessary conditions that must be satisfied
for successful applications of CWT in the extraction of
instantaneous frequencies. The effect of the values of
G, on the performance of CWT is clear; the smaller n
is, the larger the range of instantaneous frequencies to
be analyzed becomes. However, G, must be sufficiently
large enough not to violate the admissibility condition
by Eq. (7). The minimum numerical value of G, that
satisfies the admissibility condition is approximately 3.5.

Figure 4 compares the real parts of the Gabor wavelets
with G; = 3.5 and G, = 5.0. The shorter time support
for G, = 3.5 is advantageous for better time localization.
The effective support of the Gabor wavelet is taken as
[—4,4] for actual numerical implementation.

Most existing investigations have used the Morlet
wavelet which is the Gabor wavelet with G, = 5.0 (see,
e. g., Hamada 5], et al., Inoue, et al. [l). However,
Kim and Kim (2] have recently applied the Gabor wavelet
with G, = 3.5 for damage detection and illustrated the
advantage of using a smaller value of G,.

2.5 Experimental Verification
To test the performance of STFT and CWT, the near-
field signal measured at location B (see Fig. 1) is an-

Figure 4: The real parts of the Gabor wavelets
with G, = 3.5 and G, = 5.0(Morlet wavelet)
219!
I Propagating wave fromAto B i
{ (’\ by an impact ;
n RQnda-ta- wave L1t
. #3m the tae ang 't il" .

Figure 5: The ofam for the strain signal
measured at B in a beam shown in Fig. 1.
(s =128 x 10~¢ sec)

alyzed by STFT and CWT. The beam in consideration
has a small cut at C.

Figure 5 shows the spectrogram with s = 128 x 1078,
Because the conditions stated by Eqg. (35) is not simul-
taneously satisfied with any value of the window size s,
It is difficult to extract instantaneous frequency informa-
tion accurately from the result by STFT. In particular, it
is almost impossible to tell the presence of the damage
from the spectrogram.

On the other hand, the application of CWT to the
same signal gives quite satisfactory results: see Fig. 6
and Fig. 7. It is clear that the reflected wave from the
damaged location B where magnitude is quite smali can
be now detected by CWT. Although CWT with G, = 5.0
can capture the reflected wave from the damage, it is
obvious that CWT with G, = 3.5 captures the reflected
wave more accurately. To see the effect of the value
of G, (or n) on the analysis accuracy, we compare the
predicted distances from B to the damage location C in

Fig. 7.
In order to estimate the distance d, we used
At(w
d(w) = G, () 2] (37)
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(b) The corresponding ridges of the strain signal measured at B in a (b) The corresponding ridges of the strain signal measured at B in a

beam shown in Fig. 1.
Figure 6: With G, = 5.0.

where At is the difference between the arrival times of
the propagating wave from A and the first reflected wave.
Though d must be independent of frequency, there al-
ways exists the scattering of d over frequencies.

The RMS (root-mean-square) value of the estimated
distance in Fig. 8 is averaged over the frequency range
between 7 kHz and 12 kHz. As expected, the use of
G, = 3.5 yields a better estimation of the distance be-
tween B and C. It is worth noting that scattering near
the low frequency in Fig. 8 (a) is quite severe. This is
because not all the conditions stated by Eqs. (36) are
satisfied with G, = 5.0 in this frequency range: see Fig.
3.

3. CONCLUSIONS

In this paper, we investigated theoretically why the
wavelet transform outperforms the short-time Fourier
transform for the analysis of some wave signals. Specif-
ically, the role of CWT in the analysis of waves signal
where instantaneous frequencies change rapidly was ad-
dressed. The theoretical analysis using the experimen-
tally measured wave signals indeed confirmed the validity
of the present investigation.

beam shown in Fig. 1.

Figure 7: With G, = 3.5.
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Figure 8: Estimated distance from the
measurement location B to the damage location
using the ridges of the normalized scalogram.



