Battery Management System의 응용과 전망

남 궁 억

((주)파워로직스)

Battery Management System

응용 과 전망

Presented by Dr. John E. NamGoong

2000.12.1

PowerLogics Co. Ltd.

AGENDA

Application Technology

- Introduction
- Protection Circuit
- Smart Battery System
- Battery Management Sys.

Battery Pack Considerations

· Battery Pack Design

- ✓ Battery space and weight of system
- ✓ Operating voltage of components
- ✓ Total system power requirements
- ✓ Desired operational life

Optimize - Battery Usage

- Run Time
- Sys. Power Management
- Life Cycle

Design Cell capacity, Voltage, and Pack Configuration

Safety

✓ Safety Circuits

to monitor overvoltage, undervoltage, overcurrent and short circuit conditions.

Cell Balancing

✓ Mismatch of the voltage between cells
→ Using Bypass Technology caused by manufacturing variations and/or accelerated by temperature.

Fuel Gauging (SOC)

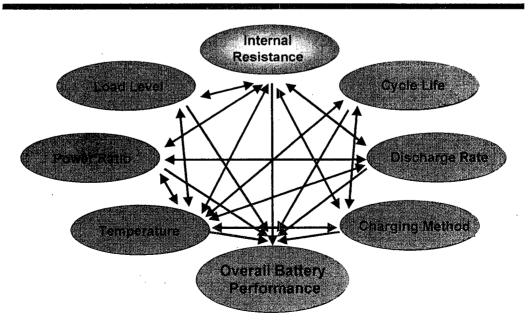
- ✓ to provide information of possible run time and precise system control.
- ✓ Factors in temperature, cycle history, battery chemistry, charge/discharge state and application usage.

Why State of Charge (SOC)?

State of Charge is need to be compensated for;

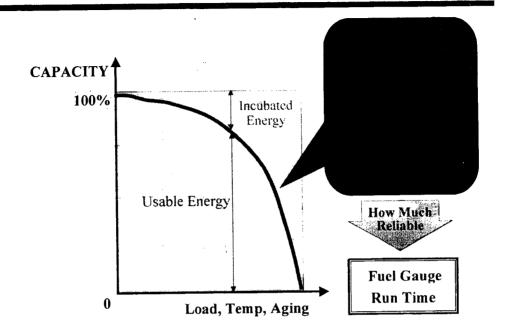
- > to ensure accurate runtime remaining predictions.
- > to provide commands for precise system control.

· State of Charge is a function of;

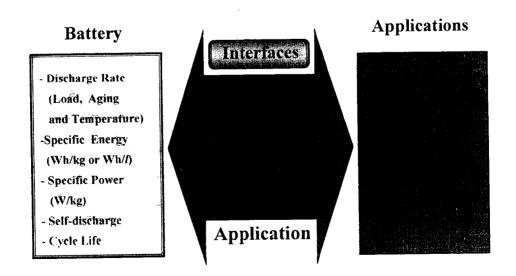

- > applied load (charging/discharging current)
- > environmental temperature
- > age of battery
- > self-discharge effects
- > charge efficiency

Power Power Design Logics Factors and Concerns for Power Design

- · Batteries are very non-linear devices;
 - Significantly affected by Load, Heat and Age
- Batteries provide very few parameters to measure
- Many differences between battery chemistries
 - Different type of chemistry
 - Same type of battery, but different company indicates different properties.



Determining Factors for Performance



Battery Characteristics

P. WER)

Battery Interfaces Designs

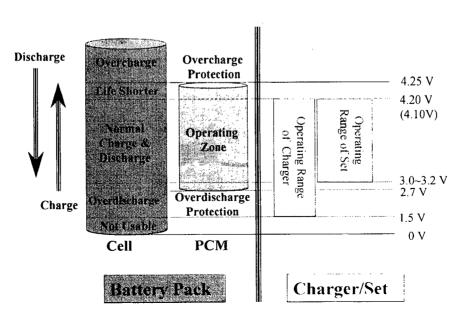
Trends for Mobile Communication

1st Gen	2 nd Gen	3 rd Gen	
Analog	Digital		
AMP	GSM, CDMA,TDMA	IMT-2000	
Voice	Voice/Data	Voice/Data/Media	
NiMH	(NiMH) Li-ion	Li-ion Li Polymer	
3/4 Cell	2 Cell →1 Cell	2 Cell (?)	

Protection Circuit Module

Protects Sensitive Li-ion Cells from;

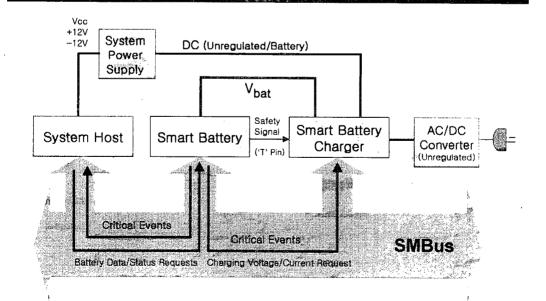
- · Overcharging Protection
- Overdischarging Protection
- Overcurrent Protection
- Short-Circuit Protection
- Reverse Charging Protection
- Thermal Protection



Pack Protection Types

Number of cells protected	Protection Types	Key Features	
3 or 4	Overvoltage Undervoltage	Very low power	
2	Overcurrent	Internal MOSFET	
6	Overcharge	(80mΩ total)	
1	Overdischarge Overcurrent	Internal MOSFET (50mΩ total)	
3 or 4	Övervoltage Undervoltage Overcurrent	Smart-discharge Circuitry	
1	Overcharge Overdischarge Overcurrent	Internal MOSEFTS (50mΩ total)	

Source: Unitrode



Smart Battery Devices

- · Safety Units
 - Li-ion Protection
 - Battery Pack Shutdown/monitor/control
- Gas gauge
 - Monitors available charge in battery cells
- Controller
 - Read, monitors and controls battery functions
 - Provides information useful to smart batteries
 - Cycle Counts
 - · Battery History
 - · Battery Manufacturer Details
 - · Time Remaining
 - · Average Current
 - · Charging Information
 - Has a communication protocol (Like SMBus)
- Charger
 - Provides voltage and current to battery pack according to particular algorithm or requests from battery

SBS Structure in Notebook PC

What BMS Do?

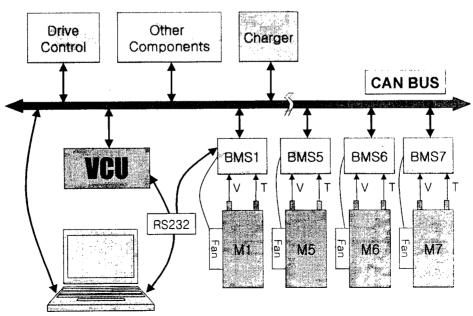
(1) Monitoring

- Voltage, Current, Temperature

(2) Managing

- Charging Algorithms (Balancing, Overcharge)
- Communication and Control
- Autonomous Operation
- Fully Integrated System

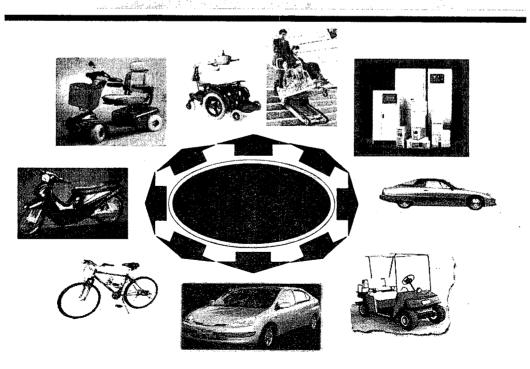
(3) Reporting and Editing


- Data Gathering and Storage (V, I, T, SOC)
- PC Interface for Service & Diagnostics

(4) Protecting

- Battery Cell, Bank, Module and Pack Protection
- Safety Disconnect Unit

BMS Structure in Vehicles



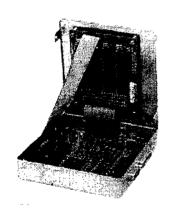
Who are the Users of BMS?

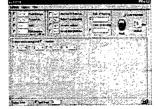
- 1. Battery Manufacturers
 - •LiPB/LiB/NiMH/NiCd/PbA
- 2. Instrumentation and Electronics Manufacturers
- 3. Power Conversion System Suppliers
 - Battery Powered Vehicles (EV/HEV/NHV)
 - Electric Bike/Scooter/Wheelchairs
 - Golf-cart
 - Uninterruptible Power Supplies (UPS)
 - •Telecommunication Sites (Load Leveling)
- 4. Network System Integrator
- 5. Outsourced Maintenance Contractor

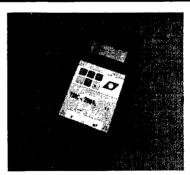
Power)

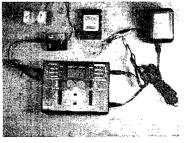
BMS Applications

Products and Application Fields





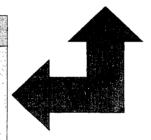

Products in Use



Battery Management System

- Charging

- Discharging
- Temperature


Monitoring & Diagnosis

Diagnosis System for Service

- Sensing Voltage, Current & Temp.
- Monitoring of Battery Abnormality
- Self-discharging
- Data Storage and History
- Alarm/Voice Logging for Warning

User Interface

- Fuel Gauge
- Available Trip Range Prediction
- Prediction of Battery Exchange
- Alarm/Voice Warning
- Fail Safe Function
- Prolong the Battery Life (Cost Saving)

Conclusions

- Compatible with all Types of Battery (PbA/NiCd/NiMH/LiB)
- Smart Fuel Gauge While Charging or Discharging
- Monitoring of Current, Voltage and Temperature
- Data Storage and Report
- Lifetime and Range Prediction
- Cooling Control at Higher Temperature
- Smart Maintenance of Battery Block
 - Aging (Cycle Counting)
 - Network Maintenance and Warning System
 - · Fail Safe and Fail Records