Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 1999.10e
- /
- Pages.191-195
- /
- 1999
- /
- 2005-3053(pISSN)
Regression Tree based Modeling of Segmental Durations For Text-to-Speech Conversion System
Text-to-Speech 변환 시스템을 위한 회귀 트리 기반의 음소 지속 시간 모델링
- Pyo, Kyung-Ran (Dept. of Interdisciplinary Research Program of Cognitive Science, Graduate School, Pusan National University) ;
- Kim, Hyung-Soon (Dept of Electronics Engineering, Pusan National University)
- Published : 1999.10.08
Abstract
자연스럽고 명료한 한국어 Text-to-Speech 변환 시스템을 위해서 음소의 지속 시간을 제어하는 일은 매우 중요하다. 음소의 지속 시간은 여러 가지 문맥 정보에 의해서 변화하므로 제어 규칙에 의존하기 보다 방대한 데이터베이스를 이용하여 통계적인 기법으로 음소의 지속 시간에 변화를 주는 요인을 찾아내려고 하는 것이 지금의 추세이다. 본 연구에서도 트리기반 모델링 방법중의 하나인 CART(classification and regression tree) 방법을 사용하여 회귀 트리를 생성하고, 생성된 트리에 기반하여 음소의 지속 시간 예측 모델과, 자연스러운 끊어 읽기를 위한 휴지 기간 예측 모델을 제안하고 있다. 실험에 사용한 음성코퍼스는 550개의 문장으로 구성되어 있으며, 이 중 428개 문장으로 회귀 트리를 학습시켰고, 나머지 122개의 문장으로 실험하였다. 모델의 평가를 위해서 실제값과 예측값과의 상관관계를 구하였더니 음소의 지속 시간을 예측하는 회귀 트리에서는 상관계수가 0.84로 계산되었고, 끊어 읽는 경계에서의 휴지 기간을 예측하는 회귀 트리에서는 상관계수가 0.63으로 나타났다.
Keywords