1999년도 한국음향학회 학술발표대회 논문집 제18권 제1(s)호

머리전달함수의 구조적 모델

* 임정빈, * 김 현 종, ** 강성 훈, *** 김 천 덕

* 국립목포해양대학교 해상운송시스템학부, ** 대전보건대학 방송학과, *** 국립부경대학교 전기공학과

Structural HRTF Model

* Jeongbin Yim, * Heyonjong Kim, ** Seonghoon Kang, *** Cheonduck Kim
 * Mokpo National Maritime University, Faculty of Maritime Transportation System, jbyim@mail.mmu.ac.kr
 ** Taejeon Medical College, Dept of Broadcast Production & Technology
 *** Pukyung National University, Dept. of Electric Eng.

요약문

이 연구에서는 구조적 HRTF(Head-Related Transfer Function) 모델의 구성 이론에 관하여 기 술하였다. 이 모델은 강체 구(rigid sphere)에 대한 음파의 전파와 회절 현상에 대한 이론 식을 근거 로 구성하였다. 이 모델은, 구성이 단순하고, 모 델 구성에 필요한 계수의 수를 극소화 할 수 있 기 때문에 실시간 구현에 적합하다. 그리고, 각 개인의 머리전달특성에 따른 개인차를 반영하여 모델을 수정할 수 있는 장점이 있다.

서 론

최근, 3차원 음향 구현에 관한 기술이 과학용, 상업용, 오락용 등의 시스템에 중요하게 적용되고 있다. 특히, PC에서 가상현실(Virtual Reality)을 구 현할 때는, 빠른 계산이 가능한 3차원 음향기술이 더욱 중요하다. 그러나, 최근의 3차원 음향 구현 기술은 간단하면서도 제한적이고, 복잡하면서도 효과적인 음향을 얻을 수 있는 모순이 있다[1-3]. 이 연구에서는 간단하면서도 효과적으로 3차원 음향을 구현할 수 있는 구조적 HRTF 모델링에 관한 기초 이론식 개발에 관하여 기술한다.

인간에게 방사된 음은, 인간의 몸통, 어깨, 머

리, 귀 등에 의한 음파의 반사, 회절 등의 여러가 지 현상에 의해서 입체적으로 들리게된다. 이러한 현상은 주파수영역에서의 HRTF(Head-Related Transfer Function)로 측정되고, 시간 영역에서는 HRIR(Head-Related Impulse Response)로 나타난 다. 실제 시스템에서의 실시간 구현을 위해서는 측정한 HRIR로부터 FIR 필터 계수를 테이블로 구 성한 후 이용한다. 그리고, 개인차로 인하여 개인 마다의 HRIR이 필요하다. 입체음향 구현에서, ITD(Interaural Time Difference)는 방위(Azimuth)변 회애 대한 입체음상의 단서를 제공하고, ILD(Interaural Level Difference)를 부과하므로 써, 입채음상의 효과를 더욱 증가시킬 수 있다. 또한, notch를 스펙트럼에 부과하므로 써 고각(Elevation) 에 eooksa 입체음상 효과를 부여할 수 있다. 그러 나, 사람에 따른 개별차이가 심하고 이것을 조종 하기가 어려우며, 음상의 전후방향 혼란이 발생한 다는 것이 문제점으로 지적되고 있다[4-5].

이 연구에서는, 사람의 어꺠, 머리, 귓바퀴 등 에서 발생되는 물리적 음향특성을 기존의 움향 이론 식으로부터 간략화하여 구성한 구조적 HRTF 모델의 이론 식을 제안한다.

1. Lord Rayleigh의 구형 모델

Lord Rayleigh에 의해 개발된 강체 구(rigid sphere)에서의 음파 회절에 관한 주파수영역에서 의 해를 도입한다. 복소 점음원을 *Supe^{-iad}으로* 나타내면, 이 음원으로부터 **r만큼 떨어진 거리에** 서의 자유음장 음압(free-field pressure)은 다음 식 (1)로 주어진다[6,7].

$$P_{fr}(r,\omega,t) = -i\omega \frac{\rho_0 S_{\omega}}{4\pi r} e^{i(kr-\omega t)}$$
(1)

여기서, $k = \omega/c$, ω 는 래디안 주파수(rad/s), $i \in \sqrt{-1}$, ρ_0 는 공기 말도(kg/m³), $c \in B \approx (m/s)$, $t \in \Lambda \wr (s)$.

그리고, 구의 반지름 a(m) 보다 큰 거리 r(m)에서 있는 점 음원에 대해서 구표면 (surface)에 형성되는 음압은 다음과 같이 Raibinowitz 등이 보고한 다홉 식(2)으로 나타난다.

$$P_{su}(r, a, \omega, \theta, t) = \frac{i \rho_0 c S_{\omega}}{4\pi a^2} \Psi e^{-i\omega t}$$
(2)

여기서, 27는 무한급수전개로서 다음 식(3)과 같이 된다.

$$\Psi = \sum_{m=0}^{\infty} (2m+1) P_m(\cos\theta) \frac{h_m(kr)}{h'_m(ka)}, r > a \quad (3)$$

여기서, θ는 음원으로부터 구 중심점까지의 음선과, 구 중심점에서 부터 구표면의 측정점까지 의 음선 사이의 각이다. 그리고, P_m은 m 차의 Legendre 다항식이고, h_m(x)은 m 차의 구형 Hankel 함수, h´_m(x)은 h_m(x)의 미분을 나타낸 다.

규격화 주파수 μ롫 다음 식(4)과 같이 정하 고,

$$\mu = ka = f \frac{2\pi a}{c} \tag{4}$$

음원에 대한 규격화 거리 p를 다음 식(5)과 같이 정하면,

$$\rho = \frac{r}{a} \tag{5}$$

전달함수 *HRTF*(ρ,μ,θ)는 다음 식(6)과 같이 구 중심에서 나타나는 압력과, 구 표면에서 나타나는 압력의 관계로 나타낼 수 있다.

$$HRTF(\rho,\mu,\theta) = \frac{P_{su}}{P_{fr}}$$
(6)

` 아 식(6)은,

$$HRTF(\rho,\mu,\theta) = -\frac{\rho}{\mu} e^{-i\mu\rho\overline{T}}$$
(7)

으로 된다. 여기서,

$$\Psi(\rho,\mu,\theta) = \sum_{m=0}^{\infty} (2m+1) P_m(\cos\theta) \frac{h_m(\mu\rho)}{h'_m(\mu)},$$

$$\rho > 1$$
(8)

이다. *HRTF*(ρ,μ,θ)를 역퓨리에 변환하면 규격 화된 머리전달 임필스응답을 구하게 된다.

그림 1은 MATLAM 프로그램을 이용하여 위의 식(7)에 대해서, ρ를 일정하게 두고, μ와 θ에 대해서 계산한 이상적인 강체 구의 주파수 특성 을 나타낸다. 이 때, a=8.75(cm), c=343(m/s) 로 청하여 계산하였다.

그림 1. 식(7)을 적용하여 계산한 강체 구의 주파수응답 특성.

2 모델의 근사화

구조적 HRTF 모델의 구성에는 ITD와 ILD에 대한 근사화 과정이 필요하다. 먼저, ITD를 고려 한다. μ>1인 경우, 움원이 구의 중심에 도달할 때 까지의 시간과, 음원이 관측점에 도달할 때까지의 시간 차 Δt에 대한 근사식은, Woodworth와 Schlosberg에 의해서 다음 식(9)가 알려져 있다[8].

$$\begin{aligned} \Delta r &= \frac{c\Delta t}{2\pi a} \\ &= \left\{ \frac{\frac{1}{2\pi} (\sqrt{\rho^2 - 2\rho\cos\theta + 1} - \rho), \text{ if } 0 \le \theta \le \theta_0, \\ \frac{1}{2\pi} (\theta - \theta_0 + \sqrt{\rho^2 - 1} - \rho), \text{ if } \theta_0 \le \theta \le \pi, \end{aligned} \right. \end{aligned}$$

여기서,

θ₀= sin ⁻¹(1/ρ), ρ≥1. (10)
 위의 식(9)는 주파수와 독립된 규격화식으로 표현

한 것이다. 다음에는 ILD의 근사화 문제를 기술한다. 이 연구에서는 위의 식 (9)에 나타낸 상대적 사간지 연을 이용하여 1차 근사 선형필터로 HRTF 모델 을 구현한다. 진폭응답을 최소위상 필터로 구현하 는 방법을 고려하면, 다음 식(11)과 같은 단일 극-영점(single-pole/single-zero) 형태의 머리그늘필터 (head-shadow filter)를 고려할 수 있다[9-11].

$$H_{hs}(\omega,\theta) = \frac{1+j\frac{\alpha\omega}{2\omega_0}}{1+j\frac{\omega}{2\omega_0}}, \ 0 \le \alpha(\theta) \le 2$$
(11)

여기서 주파수 ω₀는 다음 식(12)와 같이 구의 반경에 관계된 것으로,

$$\omega_0 = \frac{c}{a} \tag{12}$$

이고, ω₀에 대한 규격화 주파수 μ₀=ω₀α/c=1이다. 임사각 θ의 함수인 계수 α는 위의 식(11)에서 영점(zero)의 위치를 조종한 다. Lord Rayleigh에 의해 제기된 강체 구에서의 음파 회절에 관한 위의 식(7)에 대한 그림 1의 결 과와 위의 식(11)을 연계하기 위하여 θ에 대한 α의 관계를 정해야한다. 위의 식(11)의 결과가 그 림 1과 일치되는 관계를 실험적으로 구하면, 다음 과 같은 식(13)을 도출할 수 있다.

$$\alpha(\theta) = \left(1 + \frac{\alpha_{\min}}{2}\right) + \left(1 - \frac{\alpha_{\min}}{2}\right)\cos\left(\frac{\theta}{\theta_{\min}} 180^{\circ}\right)$$
(13)

이 때, α_{min} = 0.1, θ_{min} = 150⁰로 정하여 근사 하는 경우, 그림 1의 결과와 잘 잃치하게 된다. 그림 2는 위의 식(11)을 계산한 결과로서, pole은 μ=2에 고정하고, zero는 식(13)을 적용하여 θ 에 따라 변화하는 값으로 하였다.

그림 2. single-pole single-zero 구형 모델에 대한 주파수 응답 특성.

위의 식(11)의 머리그늘 필터 $H_{kc}(\omega, \theta)$ 는, 스펙트럼에 대한 단순한 진폭특성만을 나타낸다. 이 모델에 ITD를 나타내는 전파지연에 대한 all-pass 부분을 다음 식(14)와 같이 부가하여 음 상 효과를 중대시킨다.

$$H_{hd}(\omega,\theta) = \frac{1+j\frac{\omega(\theta-\theta_{aar})\omega}{2\omega_{0}}}{1+j\frac{\omega}{2\omega_{0}}}e^{-j\omega\Delta t(\theta-\theta_{arr})} \quad (14)$$

여기서, Δτ(θ)는 위의 식(9)에서 구한 것이고, ω₀는 식(12)에서, α(θ)는 식(13)에서 구한 것이 다.

위의 식(14)를 이용하여 청취자에 의한 심리움 향 평가실험을 한 결과, -90에서 +90 사이의 방위 각 변화에 대한 음상정위가 효과적으로 발생함을 알 수 있었다. 그리고, 지금 까지 기술한 식들은 $a, \ heta_{ear}, \ heta_{min}, \ lpha_{min}$ 등의 4가지 파라미터를 조절하므로 써, 개인마다의 차이를 해결할 수 있 다.

3.검 토

이 연구의 내용은 현재 실험이 진행중인 일부 내용을 기술한 것으로, Loard Rayleigh의 강체 구 에 대한 이론 식을 근거로, 구조적 HRTF 모델의 간략화 식을 구하고 일부 실험을 통하여 그 유용 성을 확인한 것이다. 이 연구에서 기술한 식들은 모두 방위각 *θ*에 관한 것이고, 고각 변화에 대한 간략화 식은 현재 연구가 진행 중이다.

4.결 론

이 연구에서는, 현재 진행 중인 구조적 HRTF 모델에 관한 일부 과정과 간단한 실험 결과만을 나타내었다. 여기서는, 기존의 pole-zero 모델을 이용하여 HRTF의 머리그늘 모델을 구현하고, 이 모델에 시간 지연을 부가한 방위각 θ에 대한 구 조적 HRTF 모델을 제시하였다. 청취자에 의한 심 리음향실험 결과, 방위각 θ의 변화에 따라 음상 정위의 변화가 자연스럽게 형성됨을 알 수 있었 다.

앞으로, 실험을 계속 진행하여 고각의 변화를 포함하는 구조적 HRTF 모델을 구현할 예정이고, 이 모델을 이용하여 3차원 입체음장을 실시간으 로 구현할 예정이다.

참고문헌

 M. Baura, H. Fuchs, and Ohbuchi, "Merging Virtual Objects with in Real World," *Computer Graphics*, Vol.26, No.2, pp.203–210, July 1992.
 A. Stettner and D. P. Greenberg, "Computer Graphics Visualization for Acoustic Simulation," *Computer Graphics*, Vol.23, No.3, pp.195–206, July 1989. [3]. 임정빈, "가상현실 선박조종 시뮬레이터 구현
올 워한 3차원 움장생성(I):머리전달함수 모델링,"
한국항해학회지 제22권(제3호), pp.17-25, 1998.

[4], Jeongbin Yim, Chunduck Kim and Seonghoon Kang, "Lower-order ARMA Modeling of Head Related Transfer Functions for Sound-Field Synthesis System," *J. Acoust. Soc. Korea*, Vol.15, No.3(E), pp.35-41, 1996.

[5]. 강성훈, 임정빈, 김학윤, 김기만, 전희영, "입체
음상 제어 시스템 개발," '96년도 시스템공학연구
소 최종 연구보고서, 1997.11.

 [6]. Leo L. Beranek, *Acoustics*, Acoustical Society of America, 1993 Ed., New York, 1996. pp.285–331.

[7]. 임정빈, "가상현실 선박조종 시몰레이터 구현
을 위한 3차원 음장생성(II):음장제어," 한국항해학
회지 제22권(제3호), pp.27-34, 1998.9.

[8]. J. P. Blauert, *Spartial Hearing*, rev. ed. Cambridge MA: MIT Press, 1997.

[9]. Jeongbin Yim, Chunduck Kim, Seonghoon Kang, "Lower-order ARMA Modeling of Head-Related Transfer Functions for Sound-Field Synthesis Systems," 한국음향학회지 제15권(제3호 (E)), pp.37-44, 1996.9.

[10]. 임정빈, 김천덕, 강성훈, "음장합성 시스템을 위한 머리전달함수의 효율적인 저차 FIR 모델링," 한국음향학회지 제15권(제3호), pp.3-12, 1996.6.

(11). Jeongbin Yim, Homoon, Jeong, Seonghoon Kang, Chunduck Kim, "Approximation of FIR Inverse-Filter for OSS Equalizer by Median Moving Average," Proceedings of WESTPRAC-V, Part 1 of 2, pp.493-498, 1994.8.

[12]. 임정빈, *머리전달함수 모델링에 의한 3차원* 음장 재생에 관한 연구, 박사학위논문, 1997. 2.