Shinri Sato, a Takehito Sengab and Masahiro Kawasakib The photochemistry of NO₂ adsorbed on Au(111) and water ice surfaces has been investigated at < 120 K in an ultrahigh vacuum system. The adsorption states of adsorbates were characterized by thermal desorption spectroscopy and IR reflection absorption spectroscopy (IRAS). The adsorption of NO₂ on Au(111) leads to formation of chemisorbed NO₂, chemisorbed N₂O₄ (D_{2h} symmetry), and well-ordered N₂O₄ (D_{2h} symmetry) physisorbed on these species with its N-N bond axis perpendicular to the surface, while N₂O₄ (D_{2h} symmetry) alone is formed on ice surfaces. No unstable N₂O₄ isomers such as D isomers were detected by IRAS on both the surfaces. The chemisorbed species on an Au surface undergo neither photodissociation nor photodesorption, and N₂O₄ physisorbed on both the surfaces is dissociated to NO₂, NO, and adsorbed atomic oxygen under irradiation at $\lambda < 430$ nm. The photodesorption yields of NO₂ and NO increase with increasing temperature from 100 K to 120 K, indicating that some thermal processes reduce the photodesorption yields. IRAS showed that no intermediate species such as adsorbed NO₂ or NO₃ were formed during N_2O_4 photolysis. photodissociation cross section of N₂O₄ physisorbed on an Au surface at 350 nm was measured from the N_2O_4 band intensity in IRAS to be 5.6 × 10⁻¹⁹ cm², which is close to the absorption cross section of gasphase N₂O₄. The cross section was linear on incident light intensity. Wavelength dependence of the cross section is not similar to the absorption spectrum of gas-phase $N_2O_4^{\ 1)}$ but resembles to that of N_2O_4 adsorbed on LiF at 68 K²⁾ as shown in Fig. 1. Physisorbed N₂O₄ photolysis over an Au surface was inhibited significantly when the Au surface was covered with a thin water ice film (~5 ML). This result suggests that the photolysis is enhanced by Fig. 1 Wavelength dependence of the photodissociation cross section of physisorbed N_2O_4 on Au(111) at 93 K. The total coverage of adsorbed NO_2 was 3 ML. The inset shows the absorption spectra of (a) gas-phase $N_2O_4^{11}$ and (b) N_2O_4 adsorbed on LiF at 68 K^2 . ^a Catalysis Research Center and Graduated School of Environmental Earth Science, Hokkaido University, Sapporo 060-0811, Japan ^b Department of Molecular Engineering, Kyoto University, Kyoto 606-8501, Japan